
On the Challenges of Effective Movement∗

Thomas Hobson
MIT Lincoln Laboratory

244 Wood St.
Lexington, MA 02420

thomas.hobson@ll.mit.edu

Hamed Okhravi
MIT Lincoln Laboratory

244 Wood St.
Lexington, MA 02420

hamed.okhravi@ll.mit.edu

David Bigelow
MIT Lincoln Laboratory

244 Wood St.
Lexington, MA 02420

dbigelow@ll.mit.edu
Robert Rudd

MIT Lincoln Laboratory
244 Wood St.

Lexington, MA 02420
robert.rudd@ll.mit.edu

William Streilein
MIT Lincoln Laboratory

244 Wood St.
Lexington, MA 02420
wws@ll.mit.edu

ABSTRACT
Moving Target (MT) defenses have been proposed as a game-
changing approach to rebalance the security landscape in
favor of the defender. MT techniques make systems less
deterministic, less static, and less homogeneous in order to
increase the level of effort required to achieve a successful
compromise. However, a number of challenges in achiev-
ing effective movement lead to weaknesses in MT techniques
that can often be used by the attackers to bypass or other-
wise nullify the impact of that movement. In this paper,
we propose that these challenges can be grouped into three
main types: coverage, unpredictability, and timeliness. We
provide a description of these challenges and study how they
impact prominent MT techniques. We also discuss a number
of other considerations faced when designing and deploying
MT defenses.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection

General Terms
Security, Theory

Keywords
Moving Target, Randomization, Diversity, Cybersecurity Chal-
lenges, Metrics

∗This work is sponsored by the Department of Defense un-
der Air Force Contract #FA8721-05-C-0002. Opinions, in-
terpretations, conclusions and recommendations are those of
the author and are not necessarily endorsed by the United
States Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MTD’14, November 3, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-3150-0/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663474.2663480.

1. INTRODUCTION
Uniformity in design and configuration of cyber systems is

known to greatly simplify resource management tasks. How-
ever, this same homogeneity also benefits modern attackers
because a single attack vector can be leveraged on many
systems to multiply the effects of the attack. Nowhere is
this phenomenon more apparent than in the case of botnets
where large numbers of systems of similar design and config-
uration are overtaken and used in large scale attacks against
victim machines [1]. Botnets often form their large attack
armies at very low cost by exploiting a single vulnerability
over and over again.

The destruction caused by botnets and numerous other
classes of attacks is largely facilitated by the uniform, static,
and predictable nature of our systems. Moving Target (MT)
defenses have emerged as a promising approach for mitigat-
ing these weaknesses inherent in today’s systems by remov-
ing many opportunities for the attacker to leverage a single
exploit in attacking many similar machines. MT techniques
are designed to create uncertainty for attackers and raise
the cost to attack protected systems by making them less
homogeneous, less static, and less deterministic. Existing
implementations of MT techniques have demonstrated the
potential for substantially disadvantaging attackers.

Address Space Layout Randomization (ASLR) [20] is a
widely used example of an MT technique that substantially
raises the level of effort required by attackers to attack a
given system. Prior to the advent of ASLR, development
of attacks exploiting memory corruption vulnerabilities was
a rather straightforward process. Attackers could identify,
with a high degree of accuracy, the locations of useful code
and data objects in memory by analyzing their own copies of
the targeted binary in advance of the actual attack. These
useful locations, and the exploits to attack them, would be
the same for all systems running the vulnerable software at
any moment in time. The widespread deployment of ASLR
implementations, which randomize the layout of portions of
memory, has significantly increased the difficulty of exploit-
ing memory corruption vulnerabilities as attackers are now
forced to expend greater effort to attack new machines: they
must now exploit memory disclosure vulnerabilities or per-
form brute force attacks in order to locate the randomized
target objects for each instance [29].

41

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2663474.2663480&domain=pdf&date_stamp=2014-11-03

S The static portion of the attack surface

D The dynamic portion of the attack surface
Dt The state of D at time t
expl(X) A predicate asserting that X is exploitable
¬expl(X) A predicate asserting that X is not exploitable
H(X) The entropy of X
I(X;Y) The mutual information of X and Y
T The amount of time it takes to attack the system if the

attacker has all required information

Table 1: Notation used throughout the paper

Although many MT techniques, such as ASLR, have been
shown to be effective against certain types of attack, chal-
lenges remain which limit their effectiveness. These chal-
lenges involve three related aspects of MT techniques: (i)
coverage, (ii) unpredictability, and (iii) timeliness. Failure
to confront challenges in these areas has kept many research
prototypes sidelined and has limited the effectiveness of ex-
isting deployments such as ASLR. We believe that MT tech-
niques continue to have the potential to disadvantage the
adversary but contend that existing MT techniques have
weaknesses stemming from deficiencies in one or more of
these aspects. We intend that the challenges presented in
this paper can serve as a foundation for evaluating the ef-
fectiveness of MT techniques, for defining metrics, and for
building effective MT design principles.

We organize the remainder of the paper as follows. Sec-
tion 2 specifies the exact definition of MT technique that
we use in the remainder of this paper. In Section 3 we de-
scribe the three challenges facing effective movement. Sec-
tion 4 presents case studies in Instruction Set Randomiza-
tion and Software Diversity and illustrates the challenges
in these classes of MT techniques. Other considerations for
building successful MT defenses are briefly discussed in Sec-
tion 5. Finally, we conclude in Section 6.

2. MOVING TARGET TECHNIQUES
A broad range of work may be considered to fall under the

umbrella of MT defense, including approaches that provide
one or more of diversity, dynamism, and non-determinism.
From a systems perspective, Moving Target technologies
may alter properties across all layers of the execution stack,
including the data, software, runtime environment, operat-
ing platform, and network, in order to disadvantage an ad-
versary [19]. In this paper we use the most literal defini-
tion of the term “Moving Target” and focus on techniques
that perform some form of movement over time; or in other
words, techniques that periodically alter one or more system
properties.

This definition includes techniques such as ASLR or plat-
form migration, techniques that randomize a program’s lo-
cation in memory at process load time or periodically change
the platform of a running application, respectively. In con-
trast, we do not consider monitoring or voting techniques
that explicitly lack movement but may otherwise be con-
sidered Moving Target under the broader definition incor-
porating pure diversity. As one specific example, consider
the Reverse Stack technique [22] that executes two instances
of a program with the same input data, one variant with
an upward-growing stack and one with a downward-growing

one, and monitors for deviations. Although this technique
provides diverse variants (two), the defensive benefit is at-
tained via monitoring overflow behavior rather than from
movement or from the altering of properties over time. It is
hence not considered in the context of effective movement.

3. CHALLENGES OF EFFECTIVE
MOVEMENT

We propose that there are three primary challenges in
developing effective MT defenses: coverage, unpredictabil-
ity, and timeliness. Coverage refers to the movement of all
elements of the attack surface defended by the technique.
Unpredictability refers to the movements being performed
in a sufficiently large space as to render guessing of the out-
come infeasible. Timeliness refers to the synchronization
of movements with attacker observations. Simply put, one
needs to address three questions: are the right pieces being
moved, is movement taking place in a large enough space,
and is movement taking place at the correct time? All too
often, techniques are developed that consider only one or
two of these areas and ignore or dismiss the other(s); all too
often, it is by means of one of these overlooked areas that
the technique is ultimately bypassed. No truly effective MT
defense may be constructed without a full consideration of
these challenges.

In this paper we refer to effectiveness purely in terms of
the security benefit offered by an MT technique. We do not
focus on other hurdles to building successful MT defenses
such as performance, compatibility, usability, or cost; that
discussion is reserved for Section 5. Nor do we consider the
composability of multiple techniques and the interrelation
between their methods of addressing each challenge area,
choosing instead to explore each challenge area on its own
for the reasons detailed below.

On the surface, each challenge area seems to have a rel-
atively straightforward application to movement. Coverage
measures how various portions are subject to movement,
and which components are ignored. Unpredictability refers
to the range of movement and the likelihood that an at-
tacker can either guess or predict how the movement is ap-
plied. Timeliness in movement is required to ensure that
it happens at the correct time with respect to the attacker.
Moreover, these properties can be precisely calculated.

In actuality, each area can only be accurately assessed
in the context of a threat model. Without such a threat
model, the conventional view that “more” of a property is
better than “less” of it may be vacuous. For instance, con-
sider coverage in the context of an MT defense against data

42

Coverage Unpredictability Timeliness

Challenge Exploitable elements of surface are
subject to movement and no infor-
mation is learned from static com-
ponents

Current or future movements can-
not be predicted by the attacker

Movement applied between at-
tacker observation and subsequent
attacker action

Formalism (I(D;S) = 0) ∧ ¬expl(S) H(D) >> 0 ∀τ ∈ (−∞, t0], I(Dt0+T ;Dτ) = 0

Table 2: Three challenges of effective movement

exfiltration. A technique that protects 80% of the data is
generally seen as superior to one that protects 50% of the
data, but if only 10% of the data is actually significant, we
cannot say which technique is better merely on the basis of
“more” and “less” protection. It may actually be the case
that neither technique protects the critical data. The lack
of a threat model has prevented us from recognizing this –
and caused us to judge a technique based on a criteria that
is measurable but has no relation to our actual needs.

Thus, although the challenges of effective movement can
be discussed generally, their actual implementation and con-
sideration in a technique can only make sense in the context
of a threat model. The discussion in this section will there-
fore employ ASLR as an illustrative example where such is
required. ASLR stands out as the most mature and widely
deployed MT technique to date; implementations of varying
potency are deployed in a variety of enterprise and consumer
operating systems in both the desktop/server and mobile
space. ASLR aims to complicate the development of practi-
cal code reuse attacks by making virtual memory addresses
unpredictable. Since exploits commonly make use of abso-
lute addresses [26], attackers must either exploit an addi-
tional memory disclosure vulnerability [28, 24] or craft an
exploit that does not rely on an absolute address [7].

We do not mean to suggest that ASLR is particularly
good or particularly bad in comparison to any other MT
technique; we choose it as our motivating example for this
section because of its widespread deployment and familiar-
ity, and also because it exhibits a weak form of each chal-
lenge and is therefore suitable for discussion from both pos-
itive and negative viewpoints. Furthermore, it is not our
intent to analyze strengths and weaknesses of ASLR (and
other techniques) in any context other than that of effective
movement, and nor is it our intent here to develop a new
ASLR-like technique intended to address these challenges.
We focus instead on the broader analysis of these challenges
in order to give direction to future MT research and use
ASLR only as an illustrative example.

Moreover, note that our goal is not to uncover or study
new weaknesses for the techniques discussed in this paper;
rather, we strive to categorize and formalize known weak-
nesses in MT techniques in order to develop a deeper under-
standing of them, and facilitate the development of stronger,
more effective techniques.

Table 1 describes the notation used in the rest of the pa-
per, and Table 2 summarizes the challenge areas explored in
the following subsections.

As described in [13] and used in Table 1, I(D;S) is the
mutual information of S and D defined by:

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y)log

(
p(x, y)

p(x)p(y)

)
and H(D) is the entropy D defined by:

H(X) = −
∑
i

p(xi)logb(p(xi))

3.1 Coverage
Coverage: The extent to which all elements of a defended

attack surface are subject to movement.
We define an MT defense with full coverage as one that

moves the entirety of the attack surface protected by the
defense. Any residual static components of the protected
system must not be sufficient for attacking the system. Fur-
thermore, the attacker should not be able to use the static
components to locate the dynamic components.

Since coverage tries to capture the extent to which the at-
tack surface is subject to movement, a näıve formalism for
it may be the ratio of the dynamic part to the entirety of
the attack surface. If S denotes the static part of the attack
surface and D denotes the dynamic part, the näıve measure
would be D

D+S
. However, this formalism is not accurate.

Consider two systems, one where the entire attack surface
is static and another one where only half of the attack sur-
face is moving, but the static part leaks all the information
necessary for attacking the dynamic part. These two sys-
tems are both insecure and easily exploitable, but the näıve
metric would be very different for them.

The appropriate formalism for coverage must state that
the amount of information that can be learned about the dy-
namic part from the static part is zero. In information theo-
retic notation, the requirement can be written as I(D;S) =
0. However, this is not enough because an MT technique
which keeps the entirety of the attack surface static would
still satisfy the requirement. It is also necessary that the
static part itself is not enough to successfully attack the
system. We write this requirement as ¬expl(S).

In other words, a technique has full coverage iff:

(I(D;S) = 0) ∧ ¬expl(S) (1)

A technique that moves the entirety of this attack surface
has full coverage, while a technique that moves only part of
this attack surface may either have partial or no coverage,
depending on the specifics of the attack model. In some tech-
niques, coverage is trivial to achieve because the attack sur-
face consists of only a single indivisible component. When
so, movement of that component is movement of the entire
attack surface by definition, and movement is either com-
plete or nonexistent. In other techniques, the attack surface

43

consists of several pieces that move independently of each
other, and some portions may not move at all.

Coverage is best measured as a binary state, and a tech-
nique either has full coverage or no (effective) coverage.
When the attacker can achieve their goal via only a small
portion of the attack surface, exposure of that small portion
is equivalent to not having coverage, regardless of how many
other portions are subject to the technique. In some cases,
a unique portion of the attack surface must be protected for
the technique to have full coverage, and the challenge lies in
recognizing which portion must be protected for that threat
model. In other cases, when many independent portions
of the attack surface are all of equal value to the attacker,
a single exposed portion becomes the target of choice and
the application of movement to all other portions is entirely
wasted.

In the context of ASLR, the main threat model consid-
ers code reuse attacks [17, 30, 25, 4]. These are attacks in
which the adversary executes existing otherwise benign code
in the program for malicious purposes. The attack surface
consists of all executable code segments, and thus full cov-
erage requires one to ensure that the locations of every code
segment in the target application’s address space are ran-
domized and not known to the attacker. Failure to meet
this coverage criteria can severely limit the effectiveness of
ASLR because those unrandomized code segments quickly
become the focus of attacks.

Most modern Linux implementations of ASLR random-
ize the locations of the heap, stack, and memory mapped
pages (which includes dynamically linked libraries), as illus-
trated in Figure 1. Randomization of the program image is
less common since many application binaries are not com-
piled as position-independent executables (PIE), despite the
availability of compile-time options to do so. This lack of
randomization allows an attacker to re-use any portion of
the main program image with certainty, since ASLR is never
applied to that component in the first place. Applications
on Windows operating systems face similar challenges; no-
tably, there have been widely-used libraries that were not
randomized because the /DYNAMICBASE (or equivalent)
option was not applied during compilation. These libraries
thus became the targeted surface for many attacks [5].

Our definition of coverage in this context is not meant to
incorporate any judgment on the quality of a movement. We
only care that a given portion of the attack surface is subject
to movement and thus labeled as having coverage, whereas
the actual quality of the movement is measured by unpre-
dictability. Therefore, again in the context of ASLR, we do
not consider the fact that all libraries are loaded in a specific
order and at specific positions relative to each other, to be
a coverage issue. Even though libraries are not randomized
relative to each other, the fact that they are randomized at
all means that ASLR has coverage with regard to libraries,
and subsequent analysis of the quality of that movement is
more properly a component of unpredictability.

As implied by the previous statement, coverage is natu-
rally a prerequisite of unpredictability and timeliness. If a
portion of the attack surface is not moving, it is 100% pre-
dictable and timeliness has no meaningful definition. If an
attack requires only that non-moving portion of the attack
surface, the technique is fatally flawed, and even when an
attack requires multiple portions of an attack surface, any
uncovered portion is an immediate freebie for the attacker.

Stack

Heap

Memory Maps

Program image
(non-PIE)

Original Memory
Layout

0x400000

Stack

Heap

Memory Maps

Program image
(non-PIE)

Randomized
Memory Layout

0x400000

static

Figure 1: 64-bit x86 Linux non-PIE memory lay-
out (not to scale and not all components included).
Program image sufficient for code reuse attacks but
remains in static location.

However, the fact that coverage is necessary by no means
makes it sufficient. Simply because a portion (or all) of the
attack surface is moved does not mean that it is being moved
to an appropriate location, and nor does it mean that it is
being moved at the correct time with respect to the attacker.

3.2 Unpredictability
Unpredictability: The extent to which the outcome of

current or future movements of the attack surface are inde-
terminable by an attacker.

Unpredictability can be defined as the amount of informa-
tion an attacker has or can guess about the dynamic part of
the attack surface in a given MT technique. In other words,
an MT technique is unpredictable if the space of possible
movements is sufficiently large, where “sufficiently” depends
upon the threat model. A system that has two possible
states should probably not be regarded as unpredictable un-
der any possible threat model. Formally, a technique is un-
predictable iff:

H(D) >> 0 (2)

In other words, unpredictability requires that the move-
ment exposes a large entropy to the attacker. The unpre-
dictability of a technique can be measured in a relatively
straightforward manner. At its most basic, and assuming
the use of a secure and correctly invoked random number
generator, unpredictability can be regarded as the probabil-
ity of the attacker correctly guessing where something has
moved. This can be expressed as 1

n
, where n is the number of

possible movement locations. This type of probability may
be calculated as a whole or on a piece-by-piece basis depend-
ing on the threat model and the technique in question, and

44

Stack

Heap

Memory Maps

Program image
(non-PIE)

Random Stack
Offset (22 bits)

Random Mmap
Offset (28 bits)

Random Heap
Offset (13 bits)

Figure 2: Entropy by section in 64-bit x86 architec-
tures.

may be complicated by implementation concerns, but gen-
erally remains a simple calculation. The method by which
to combine multiple piece-by-piece unpredictability calcula-
tions into a single measurement is sometimes less clear, but
is certainly mathematically possible if both the threat and
the attack surface can be adequately quantified.

Unlike coverage, unpredictability works on a “more is bet-
ter” model, assuming that the movement is not otherwise
compromised. No defense can entirely ignore the possibility
of a lucky guess by the attacker, or of a brute force attack
to exhaust the possible movement range, but the likelihood
of such a compromise is reduced proportionally as the range
of movement possibilities is expanded.

In the context of ASLR, unpredictability varies by compo-
nent and certain components are in turn composed of multi-
ple pieces. As shown in Figure 2, in current x86 64-bit Linux
kernels, the stack, heap, and mapped regions are random-
ized with 22, 13, and 28 bits of entropy, respectively. Thus in
theory, and temporarily setting aside the problem of leaked
information, the probability of guessing the location of a
particular library (contained in the mapped regions) is 1

228
.

However, libraries are generally loaded in a static order and
with static offsets to each other. Therefore, if one knows the
location of one particular library in a process, the location
of every other library is 100% predictable.

In other words, if the libraries are moved as one cohe-
sive block with static offsets from one another, they can be
regarded as a single component when evaluating the unpre-
dictability of a movement. The security of one portion of the
component becomes dependent upon the security of other
portions of the component. One proposed improvement for
ASLR, Address Space Layout Permutation (ASLP) [11], at-

tempts to eliminate this dependence amongst libraries by
randomizing each library separately.

Another situation that can reduce the apparent entropy
is when components of the surface contain references to one
another but the components have varying levels of entropy.
In such cases the predictability of components with high
entropy is often reduced to the predictability of components
with low entropy [8]. In the context of ASLR, increasing the
independence of memory sections can minimize this entropy
reduction effect.

Unpredictability only applies when coverage is present,
but has no direct impact (or dependence) on the timeliness
discussed in the next section. Indirectly, unpredictability de-
pends entirely on the secrecy of the movement and in forcing
the attacker to guess randomly rather than intelligently. If
that secrecy is compromised, even when the actual move-
ment otherwise remains entirely unpredictable, the attacker
need not guess at all.

3.3 Timeliness
Timeliness: The extent to which a movement can be ap-

plied between the time at which an attacker makes an obser-
vation and time at which an attack is completed.

We define a timely MT defense as one that completes
movement in the period between an attacker observation
point and a subsequent attacker interaction point. An ob-
servation point is any point in which the attacker has the
opportunity to learn about the outcome of the most recent
movement and may be passive or covert. A subsequent in-
teraction point is any point in which the attacker has the
opportunity to execute an action based upon information
learned at the observation point. Timeliness requires that
information learned at an observation point must be of no
value during the next interaction with an attacker. The du-
ration of time to perform a movement must be shorter than
the time between an observation point and the next inter-
action point.

Timeliness can be more formally defined as the amount
of information an attacker learns about the state of the dy-
namic part of the system based on all of the information
available about its past states. In other words, if the amount
of time it takes to successfully attack the system is T , the
amount of information the attacker has about the state of
the system at time of attack given all the past history of the
system should be zero. Formally, a technique is timely iff:

∀τ ∈ (−∞, t0], I(Dt0+T ;Dτ) = 0 (3)

Another way of interpreting Eq. 3 is that the system has to
move randomly after the attacker has the chance to observe
(in the period t = −∞ to t0) and before there has been an
opportunity to act on that information (t = t0 + T).

Choosing the correct time to move is just as critical for
a technique as is its coverage and unpredictability, but the
timeliness of movement is often significantly harder to judge
than the other two. It is likely that multiple instances of
movement will be required during the duration of a defensive
activity, since a single movement is of limited utility unless
the attacker is similarly restricted to a single attack, and the
timing of this movement is critical. Even more than coverage
and unpredictability, timeliness as applied to a specific tech-
nique depends entirely upon the threat model. Movement
must always be synchronized with the attacker’s actions.

45

Unfortunately, an attacker’s actions may not be detectable
by the defender. Even aside from the difficulties inherent
in detecting the initial launch stages of a new attack, the
“actions” taken by the attacker may be limited to passive
observation. When the attacker only observes the target in
order to judge the perfect moment to strike, the defender
can observe no signal until the very moment that the attack
is launched, at which point it may be too late to take ef-
fective defensive action. Without any sign that an attack is
imminent, or even any indication that it is being targeted,
movement can only be triggered at defined system events
based on the threat model. Ironically, if a threat model has
been clearly defined and movement is performed during the
appropriate events, the defender may never see even an in-
dication of an attack because the attacker is prevented from
ever getting a clean shot.

While a faster movement may often correlate with a more
effective movement, it is misleading to measure timeliness
purely in terms of speed. Rather, it must be measured in
terms of the relative time that it takes to perform a move-
ment (following an observation point) versus the time that
it takes an attacker to execute subsequent steps in an attack
sequence. While an ideal movement is performed between an
observation point and the very next attack, moving at any
point within the attack sequence may provide some security
benefit by disrupting later stages of an attack.

In the context of ASLR, timeliness in movement means
eliminating the interval in which a potential attacker can
observe or learn information about a memory address in
a target process and launch an attack using that observed
address, or reducing the window of opportunity for a brute
force attack. A perfectly timed ASLR implementation would
be one in which rerandomization takes place in synchro-
nization with the attacker’s observation of addresses, and
in synchronization with brute force attacks to prevent the
probability of success from rising above a defined threshold.
A lack of timeliness in ASLR is most apparent in the case of
a direct [28, 24] or indirect memory disclosure attack [23] in
which the adversary leaks the addresses of a running process
and proceeds to use those leaked addresses to craft the next
stage of the attack, as shown in Figure 3.

In the case of a traditional brute force attack, timely
movement can provide a slight benefit to security by elim-
inating the information the attacker has learned from pre-
vious unsuccessful guesses. As Shacham et al. [26] have
demonstrated, rerandomization can only double the number
of expected guesses versus a technique that never rerandom-
ized; we consider this to be primarily a challenge of unpre-
dictability. However, continuing with the example of code
reuse attacks, there also exist attacks in which the attacker
can learn portions of an address, such as by a bytewise guess-
ing attack [3], or even the entire address by memory disclo-
sure. In the face of this method, timely movement can revert
the probability of a successful attack from highly probable
(perhaps even 100%), back to the original level of unpre-
dictability, which is the amount of uncertainty in memory
locations.

In all cases, the attacker model is critical to an appropri-
ate understanding of timeliness. Without an understanding
of the actions of an attacker, or at least an idea of their
steps, there is no way to determine whether any particu-
lar schedule of movement is at all reasonable. Lacking this
understanding, the only approximation of timeliness is to

Stack

Heap

Memory Maps

Program image
(non-PIE)

Load-time Memory
Layout

Stack

Heap

Memory Maps

Program image
(non-PIE)

Fixed Run-time
Memory Layout

Attacker

disclosure

payload
crafted from
disclosure

Figure 3: Memory locations are fixed at process load
time, while memory disclosures occur at run time.
A disclosure at run time reveals location for the du-
ration of the process.

schedule movement frequently and hope that the time re-
quired to carry out an attack is greater than the movement
interval.

Lack of timeliness is the greatest flaw that we have seen
in existing moving target techniques, and indeed the lack of
a defined threat model is pervasive throughout MT defenses
in general. Techniques that are intended to prevent attacker
persistence have a good implicit understanding of timeliness
due to the characterization of their threat model: their time-
liness factor is directly related to the amount of time that
they are willing to risk an attacker maintaining persistence
within their system [18, 6]. Many other techniques make
an attempt at timeliness by including movement based on
timers or detected actions, but do not explicitly tie such
movement to the attacker. This is of particular importance
in assessing a technique: coverage is usually mentioned and
unpredictability can be explicitly measured in most cases,
but timeliness is more subtle. The inclusion of time-based
and action-based rerandomization can easily convince the
reader that a technique is timely, but unless the threat model
is fully defined, one cannot be sure that the movements are
actually relevant.

4. CASE STUDIES
Thus far, we have employed ASLR in order to help illus-

trate the challenges of effective movement with a real-world
example. ASLR is by no means the only such example, and
we now wish to form a more complete picture of the chal-
lenges by considering two classes of technique in toto. First,
we will consider the category of Instruction Set Randomiza-
tion (ISR) which has seen multiple independent implementa-
tions. We will then consider the category of Software Diver-

46

sity, which is an even broader space with multiple techniques
developed along entirely different lines, although we choose
to focus on a narrower subset for discussion purposes. Ta-
ble 3 summarizes these challenges as applied to these three
technique types.

While we have defined formal ways to describe the goals
for MT techniques in addressing these challenges, and it
is feasible to use these formalisms to gain intuition about
whether or not a technology meets these goals, it is much
more difficult to quantitatively measure a technology’s effec-
tiveness in the challenge areas. This is particularly true for
coverage, given the difficulty of defining the attack surface
[14], and for timeliness, given the difficulty of determining
all potential attacker observation points. Metrics to quanti-
tatively measure the effectiveness of technologies in terms of
these challenge areas have not yet been developed and are
sorely needed for proper evaluation, but can only be defined
in terms of a threat model. Therefore, the case studies in
this section are discussed and formally described rather than
quantitatively measured.

4.1 Instruction Set Randomization
Instruction Set Randomization (ISR) techniques [10, 21,

2] aim to prevent code injection attacks. Code injection at-
tacks work by exploiting memory corruption vulnerabilities
in a victim process to insert code into that process, and
then redirect the control flow to that injected code. Threat
models for ISR techniques assume that the attacker already
has the ability to inject code and redirect control flow, and
ISR defenses randomize the instruction set of a process, thus
complicating an attacker’s attempt to insert valid code. An
early ISR proposal by Kc et al. [10] suggests encoding stan-
dard x86 instructions by performing XOR operations with
a secret key. Prior to execution of each encoded instruction,
the processor decodes the instruction by XORing it with the
key. A code injection attack that injected unencoded x86 in-
structions would likely be untranslatable or interpreted as
non-sensible instructions during the decoding process, thus
thwarting attackers. In such ISR techniques the instruction
encoding is the system property subject to movement.

An ISR technique with full coverage strives to encode all
executable instructions. Wherever instructions are permit-
ted to execute without encoding, the attacker has an oppor-
tunity to use them in a code injection attack. Instructions
that are statically compiled into the binary may be easily
encoded, but it is not immediately clear how to best handle
self-modifying or just-in-time compiled code. Such compat-
ibility concerns commonly lead to coverage concessions. For
example, it is difficult to encode instructions that are writ-
ten into the process stack upon signal delivery. One ISR
technique developed by Portokalidis et al. [21] offers com-
patibility with such signal jump vectors (trampolines) by
executing those instruction sequences without performing
any decoding, but this compromise in coverage presents an
opportunity for the attacker.

In formal terms of coverage as defined in Eq. 1, D rep-
resents the encoded instructions whereas S represents the
unencoded instructions. Based upon known attacks it does
not appear that any information about the encoding of D
can be obtained from S, thus I(D;S) = 0. However, we
cannot say that ¬expl(S) because it is unclear whether the
unencoded instructions alone are sufficient for successful at-
tacks. Thus, (I(D;S) = 0) ∧ ¬expl(S) cannot be assured

and full coverage is not guaranteed. In order to satisfy Eq. 1,
ISR techniques must apply the encoding to all instructions,
including those generated at runtime.

Unpredictability in ISR is concerned with the guessabil-
ity of the encoding of the instruction set. In assessing un-
predictability we often initially evaluate the entropy of the
encoding key: with a 32-bit key, we would expect an at-
tacker to perform 231 guesses on average before discovering
the correct key. Although this level of entropy would in-
deed be sufficient against most threats today, it is difficult
to achieve in practice. Sovarel et al. [27] demonstrated at-
tacks against ISR techniques using XOR encoding that use
bytewise guessing in order to significantly reduce the num-
ber of expected guesses required by an attacker. Using this
approach an attacker could guess a 32-bit key in as few as
512 (27×4) attempts on average. In the case of an automat-
ically respawning web server, where an attacker may make
hundreds or thousands of guesses in a short amount of time,
this is insufficient unpredictability. In terms of Eq. 2 for this
attack model, ¬(H(D) >> 0) for H(D) = 7 bits. Satisfying
Eq. 2 requires the use of stronger encryption schemes that
can in practice provide the ostensible level of entropy.

In the context of ISR, timeliness considers when to change
the encoding. To be effective, techniques must change the
encoding before the attacker is able to determine the key
and act according to that knowledge. A technique that of-
fers more granular encoding is more likely to achieve effective
timeliness against a broader range of attackers. In the case
of the bytewise key guessing attack, an ideal ISR technique
would change the encoding after each guess, rendering any
information gained from previous guesses useless. While ISR
techniques to date may not support re-encoding at arbitrary
points in a program, some offer sufficient granularity to de-
feat this particular attack. Each attempted guess causes
the process to crash and thus any re-encoding that is more
granular than crash-time provides sufficient timeliness.

For example, the RISE technique [2] thwarts this attack
by changing keys each time the attacker attempts a guess
(and induces a crash), including at the time of process fork-
ing. Any information about the encoding that was obtained
from a crash-inducing guess provides no benefit to the at-
tacker about the new encoding. In terms of Eq. 3, we define
t0 as crash time and T as the time to inject encoded instruc-
tions following the crash. Under this attack model, informa-
tion about the encoding can only be learned at time t0 and
any information learned at time t0 provides no information
about future encodings as the key is immediately changed,
thus ∀τ ∈ (−∞, t0], I(Dt0+T ;Dτ) = 0. Conversely, a second
published technique [10] changes the encoding only at com-
pilation time rather than program invocation time, therefore
not satisfying Eq. 3 and thus not timely in the face of such
guessing attacks. Under broader threat models, including
against guessing attacks that do not crash the process, tech-
niques must allow for more granular re-encoding, such as
after every instruction, in order to satisfy Eq. 3.

4.2 Software Diversification
Software diversity aims to increase the cost of exploit de-

velopment by randomizing aspects of a program’s implemen-
tation [12]. In widely-used traditional software, identical bi-
nary code may run on millions of machines at once. This
allows an enormous economy of scale for the attacker: a sin-
gle exploit can be used to compromise all machines running

47

MT Defense Coverage Unpredictability Timeliness

ASLR Program image not com-
piled as position indepen-
dent executable

13 bits of entropy for heap
on 64-bit Linux

Randomized at load time,
disclosures at runtime

ISR Exception for unencoded in-
structions during signal de-
livery

XOR encoding permits key
guessing in as few as 512 at-
tempts on average

Encoding at compilation
time, bytes of encoding key
disclosed at runtime

Software Diversity Code generated at runtime
not diversified

Having an insufficient pool
of variants

Only changing variants
when user downloads an
update

Table 3: Example deficiencies in popular categories of MT defenses (not exhaustive).

this code. Software diversity can reduce this economy of
scale by reducing the likelihood that a single exploit can be
used against large numbers of machines. Many existing im-
plementations of software diversity focus on compiler-based
approaches [12, 9], which leverage the compiler’s ability to
produce large amounts of functionally equivalent, but in-
ternally different, variants of an input program. It is these
internal implementation details that are subject to move-
ment.

We will here focus on one specific software diversification
technique: NOP insertion, as described by Jackson et al.
[9]. NOP insertion is a compiler-based diversification pass
which probabilistically inserts a single no-operation (NOP)
before each instruction of a program according to the user’s
parameter pnop. This changes the code size and layout and
thus restricts the attacker’s ability to predict the location
of useful code segments such as gadgets used in Return-
Oriented Programming (ROP). This attack model can be
defined in terms of the notation of Table 1 where our attack
surface is the code segment of a program binary. We can
partition this segment into two portions: D, the portion
of the binary that is affected by NOP insertions, and S, the
portions of the binary that is not affected by NOP insertion.

Implementations of software diversification with full cov-
erage must ensure that all parts of the program are diversi-
fied. In the case of diversity implemented by inserting NOPs
into programs, full coverage requires that NOPs be inserted
with a pre-specified rate into all code executed by an ap-
plication, including code in the program image, statically or
dynamically linked libraries, and code generated at runtime.
A failure to diversify any of these code portions may lead
to a situation where an attack on the non-diversified por-
tion can still be performed, undermining the effectiveness
of the movement. Compiler-based software diversification
evades most coverage issues by virtue of being implemented
as a compiler pass: ensuring that the program image and
libraries are comprehensively diversified can be achieved by
compiling them with the diversifying compiler. Handling
code generated at runtime, such as that created during just-
in-time compilation, is more difficult, since every runtime
code generator would need to implement a diversification el-
ement. This is, however, a difficulty in implementation and
not a fundamental limitation of diversification techniques.
By applying NOP-insertion indiscriminately to all code, in-
cluding code generated at runtime, Eq. 1 can be satisfied. If
all code is affected by NOP-insertions then S = ∅, making
(I(D;S) = 0) ∧ ¬expl(S) trivially true as I(D; ∅) = 0 and
¬expl(∅) are both true.

Unpredictability in software diversity is related to the at-
tacker’s ability to predict the location of useful code seg-
ments such as ROP gadgets. Therefore, it is ultimately de-
termined by the ability of the attacker to infer the location
of gadgets in one variant by their knowledge about the loca-
tion of gadgets in another variant. The unpredictability of
gadgets in a NOP-compiled program varies with the value
of pnop as defined above, the total number of variants dis-
tributed, and the pattern of distribution. At pnop = 0 or
pnop = 1, no unpredictability is achieved, whereas the maxi-
mum variance occurs at pnop = 0.5. Unpredictability is also
directly proportional to the number of variants produced,
and the uniformity of their distribution. Ideally, every user
would run a different variant of each program, but there may
be practical problems in creating an arbitrarily large number
of variants. As the number of variants increases, the cost of
their generation and maintenance also increases, and repro-
duction of individual user errors is rendered problematic.

Due to the number of instructions in even a small pro-
gram, the limit on the number of possible variants is ex-
tremely large to the point of being unlimited for practical
purposes. For example, a small program containing about
1,000 instructions would have 21000 possible variants. If
pnop = 0.5 then all variants are equally likely and the en-
tropy is H(D) = −

∑
21000

1
21000

log2(1
21000

) = 1000 bits,
which satisfies Eq. 2. However, calculation of the unpre-
dictability may be somewhat more complex depending on
the attack model. If the attacker need locate only one par-
ticular instruction, the location of that instruction in the
un-diversified binary impacts the unpredictability. The lo-
cation of each instruction in the binary is dependent upon
the instructions that come before it, and thus an “early” in-
struction has much lower unpredictability than a “later” in-
struction. To best satisfy Eq. 2, NOP-insertion techniques
must provide a sufficient level of unpredictability for all in-
structions in a program, support a large pool of variants, and
insert NOPs according to the maximum variance quantified
by pnop = 0.5.

Timeliness is related to the length of time that it takes
an attacker to profile a single variant; a timely implemen-
tation should replace one variant with another at intervals
too short to allow the attacker to make use of any discov-
ered gadgets. The NOP insertion technique outlined in [9]
does not describe a timeline over which new variants are
obtained, but does describe an “app-store”-like distribution
model. Assuming usage similar to app stores common to
modern mobile platforms, a user could get an individual-
ized variant whenever they download or update an applica-

48

tion. In terms of timeliness, this implementation is vulnera-
ble to targeted attacks: an attacker has until the next time
a new version of the software is released (and longer, if the
user does not immediately upgrade) to carry out the attack.
A higher level of timeliness could be achieved by creating
a more frequent replacement cycle, applied as a response
to opportunities for probing the variant. An implementa-
tion that switched variants on each crash would likely frus-
trate the construction of exploits because attacker probes
commonly cause applications crashes, although more subtle
probings are also possible.

We can restate these timeliness requirements in terms of
Eq. 3: let T be the time it takes an attacker to execute
an attack and Tr be the time between successive variant
replacements. If we assume that variants are independent
it is clear that ∀τ ∈ (−∞, t0], I(Dt0+Tr ;Dτ) = 0 because
one cannot gain any information on Dt0+Tr from Dt0 . Vari-
ant replacement must have occurred between [t0, t0 + Tr]
and variants are independent. By choosing a Tr such that
Tr < T we can satisfy Eq. 3. Thus, under the crash-inducing
adversarial model, variant replacement would best happen
at process load time rather than upon downloading or up-
dating, to best satisfy Eq. 3.

Note that in many cases, it is straightforward to determine
whether or not equations 1, 2, and 3 are satisfied, but it is
significantly more difficult to calculate the actual values for
them. For instance, it is arguable whether I(D;S) equals
zero for a given technique and an attacker model, but in
cases that it is not, it much harder to compute its value be-
cause one has to consider all possible ways that information
about D can be leaked by S.

5. OTHER CONSIDERATIONS
Aside from ensuring the effectiveness of the movement,

there are a number of other considerations when designing
and deploying MT techniques. Since these considerations do
not impact the effectiveness from a security perspective, we
do not consider them as part of the challenges of effective
movement. However, they are important for achieving a
practical defense that is capable of widespread adoption, so
we briefly discuss them here for the sake of completeness.

Low overhead is frequently argued to be one of the most
important criteria for achieving widespread adoption. Over-
head can be defined in different ways depending on the con-
text of the system, but a few typical measures include per-
formance overhead, memory/storage overhead, and commu-
nication (network) overhead. Previous work has suggested
that if the processing overhead of a technique in general
is higher than a few percentage points, the technique has a
lower chance of seeing widespread adoption [29], and the his-
tory of widely deployed techniques certainly provides more
evidence for this belief. Widely deployed defenses including
ASLR and even non-MT techniques such as non-executable
data (NX) have negligible performance overheads. In order
for MT techniques to gain widespread adoption, they must
avoid incurring high overhead.

Moreover, since MT is inherently a probabilistic defense,
its overhead should be correspondingly less than the over-
head of a stronger, deterministic defense. For example, re-
compilation of a C program with SoftBound + CETS [15,
16, 29] allows for complete memory safety with an average
of 116% performance overhead. All else being equal, a prob-
abilistic randomization defense must have a 116% overhead

performance ceiling as there would be no reason to substi-
tute guaranteed protection for probabilistic protection. Note
that the thresholds set by deterministic defenses are abso-
lute upper bounds; for widespread adoption, the acceptable
overhead is usually very small, as previously discussed.

Direct cost is another important factor that determines
the practicality of any defense in general, and MT defenses
in particular. There are various different direct costs to con-
sider: development cost, deployment cost, operational cost,
maintenance cost, and others. These costs can only be eval-
uated in the context of a particular environment and may
directly impact the deployable practicability of many tech-
niques.

The utility of an MT defense is also contingent upon the
extent to which it impairs or otherwise negatively impacts
normal functionality of a system. This is sometime referred
to as a system’s mission. If an MT technique impairs the
functionality of the system because of the nature of the
movement that is being applied or even because of the over-
head it incurs, there will be a much smaller chance of its
adoption.

The expertise required on the operator side of an MT
technique is yet another important consideration. Requiring
expert knowledge for proper operation is a hurdle to the
deployment of MT techniques. Ideally, an MT technique
should be seamless to the user or administrator of a system
while providing complexity for the attackers.

Finally, dependency of the MT defense on other system
components, its compatibility with those components, and
being able to apply it to some parts of the system, but not
others (modularity) are other considerations for practical
MT defenses.

6. CONCLUSION
MT research has exhibited the potential to substantially

disadvantage the adversary but at the same time has ex-
posed numerous shortcomings in the effectiveness of MT
techniques. We have identified three primary challenges
to achieving effective defense: (i) coverage, which describes
the challenge of including the entire attack surface in the
movement, (ii) unpredictability, which refers to the range
of movement and the likelihood that an attacker can guess
or predict a movement, and (iii) timeliness, which is con-
cerned with the challenge of synchronizing movements with
attacker observations.

We have shown how these challenges manifest themselves
in some of the more well-known MT categories of ASLR,
ISR, and Software Diversity. Notably, all MT defenses ex-
amined exhibited weaknesses across all three challenges. We
do not believe that these weaknesses are fundamental to the
techniques themselves but that they are indicative of the
major challenges that must be addressed when building ef-
fective MT defenses. We hope that the identification and
discussion of these challenges can help build a foundation
for future research in developing and evaluating effective MT
defenses.

7. REFERENCES
[1] P. Barford and V. Yegneswaran. An inside look at

botnets. In M. Christodorescu, S. Jha, D. Maughan,
D. Song, and C. Wang, editors, Malware Detection,
volume 27 of Advances in Information Security, pages
171–191. Springer US, 2007.

49

[2] E. G. Barrantes, D. H. Ackley, T. S. Palmer,
D. Stefanovic, and D. D. Zovi. Randomized instruction
set emulation to disrupt binary code injection attacks.
In Proceedings of the 10th ACM Conference on
Computer and Communications Security, CCS ’03,
pages 281–289, New York, NY, USA, 2003. ACM.

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking blind. In Proceedings of the 35th
IEEE Symposium on Security and Privacy, 2014.

[4] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In Proc. of the 17th
ACM CCS, pages 559–572, 2010.

[5] X. Chen. Aslr bypass apocalypse in recent zero-day
exploits, 2013.

[6] DoD. Lightweight portable security, 2014.

[7] T. Durden. Bypassing pax aslr protection, 2002.

[8] W. Herlands, T. Hobson, and P. Donovan. Effective
entropy: Security-centric metric for memory
randomization techniques. In Workshop on Cyber
Security Experimentation and Test, 2014.

[9] T. Jackson, A. Homescu, S. Crane, P. Larsen,
S. Brunthaler, and M. Franz. Diversifying the software
stack using randomized nop insertion. In Moving
Target Defense, pages 151–173. 2013.

[10] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-set
randomization. In Proceedings of the 10th ACM
conference on Computer and communications security,
CCS ’03, pages 272–280, New York, NY, USA, 2003.
ACM.

[11] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (aslp): Towards
fine-grained randomization of commodity software. In
Proc. of ACSAC’06, pages 339–348. Ieee, 2006.

[12] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz.
Sok: Automated software diversity. In Proceedings of
the 35th IEEE Symposium on Security and Privacy,
2014.

[13] D. J. C. MacKay. Information Theory, Inference &
Learning Algorithms. Cambridge University Press,
New York, NY, USA, 2002.

[14] P. K. Manadhata and J. M. Wing. An attack surface
metric. Software Engineering, IEEE Transactions on,
37(3):371–386, 2011.

[15] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. Softbound: Highly compatible and
complete spatial memory safety for c. In Proceedings of
the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09,
pages 245–258, New York, NY, USA, 2009. ACM.

[16] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. Cets: Compiler enforced temporal
safety for c. In Proceedings of the 2010 International
Symposium on Memory Management, ISMM ’10,
pages 31–40, New York, NY, USA, 2010. ACM.

[17] Nergal. The advanced return-into-lib(c) exploits (pax
case study). Phrack Magazine, 58(4):54, Dec 2001.

[18] H. Okhravi, A. Comella, E. Robinson, and J. Haines.
Creating a cyber moving target for critical
infrastructure applications using platform diversity.

Elsevier International Journal of Critical
Infrastructure Protection, 5:30–39, Mar 2012.

[19] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein.
Finding focus in the blur of moving-target techniques.
IEEE Security & Privacy, 12(2):16–26, Mar 2014.

[20] PaX. Pax address space layout randomization, 2003.

[21] G. Portokalidis and A. D. Keromytis. Fast and
practical instruction-set randomization for commodity
systems. In Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC ’10, pages
41–48, New York, NY, USA, 2010. ACM.

[22] B. Salamat, A. Gal, and M. Franz. Reverse stack
execution in a multi-variant execution environment. In
Workshop on Compiler and Architectural Techniques
for Application Reliability and Security, 2008.

[23] J. Seibert, H. Okhravi, and E. Soderstrom.
Information leaks without memory disclosures:
Remote side channel attacks on diversified code. In
Proc. of the 21st ACM CCS, 2014.

[24] F. J. Serna. cve-2012-0769, the case of the perfect info
leak, 2012.

[25] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proc. of ACM CCS, pages 552–561, 2007.

[26] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In Proc. of ACM CCS,
pages 298–307, 2004.

[27] A. N. Sovarel, D. Evans, and N. Paul. Where’s the
feeb? the effectiveness of instruction set
randomization. In 14th USENIX Security Symposium,
volume 6, 2005.

[28] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter. Breaking the memory
secrecy assumption. In Proceedings of EuroSec ’09,
2009.

[29] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok:
Eternal war in memory. In Proc. of IEEE Symposium
on Security and Privacy, 2013.

[30] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh,
and P. Ning. On the expressiveness of return-into-libc
attacks. In Proc. of RAID’11, pages 121–141, 2011.

50

