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MOVING TARGET

Hamed Okhravi, Th omas Hobson, David Bigelow, and William Streilein | MIT Lincoln Laboratory

Moving-target (MT) techniques seek to randomize system components to reduce the likelihood of a 
successful attack, add dynamics to a system to reduce the lifetime of an attack, and diversify otherwise 
homogeneous collections of systems to limit the damage of a large-scale attack. In this article, we review 
the fi ve dominant domains of MT techniques, consider the advantages and weaknesses of each, and make 
recommendations for future research.

P rotecting critical systems and assets against cyber-
att acks is a continuous uphill batt le. Defend-

ers must protect a diverse landscape containing an 
unknown number of vulnerabilities of various types, 
whereas att ackers need only fi nd one or a few exploitable 
vulnerabilities to compromise a system. Th e problem is 
exacerbated by the uncomfortable reality that defenses 
of ever-increasing complexity are oft en outmaneuvered 
by simple, well-craft ed exploits. Consequently, research-
ers and policymakers have increased focus on rebalanc-
ing the competition in favor of defense. One potentially 
promising approach is to create additional uncertainty 
for att ackers by dynamically changing system properties 
in what is called a cyber moving target (MT).

Cyber MT techniques att empt to make systems 
less static, less homogeneous, and less deterministic 
to increase att ackers’ workload. MT techniques seek 
to randomize system components to reduce the likeli-
hood of a successful att ack, add dynamics to a system to 
reduce the lifetime of an att ack, and diversify otherwise 
homogeneous collections of systems to limit the damage 
of a large-scale att ack.1 MT techniques are applicable to 
all aspects of defense including deception, protection, 

detection, and reaction. However, the majority of work 
to date has focused on deception and protection.

Many MT techniques have been proposed in aca-
demic literature (see the “Notable Moving-Target 
Techniques” sidebar); some were studied before the 
term moving target was coined, and others have MT 
implications without originally being intended for 
that area. Unfortunately, although many eff orts have 
focused on the design and implementation of new MT 
techniques, litt le work has been done to evaluate their 
practical eff ectiveness, understand the full scope of 
their benefi ts, and enumerate and assess their gaps and 
weaknesses. Th is article presents a summary of several 
types of MT techniques, which we categorized into fi ve 
major domains: dynamic networks, dynamic platforms, 
dynamic runtime environments, dynamic soft ware, and 
dynamic data. 

Overview
Movement for defensive purposes has long been 
studied and applied in the realm of physical con-
frontations, but its application to computing systems 
is comparatively new. We examine techniques for 

Finding Focus in the Blur 
of Moving-Target Techniques
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employing movement in computing systems, focus-
ing on techniques available as research prototypes and 
commercial solutions. Although outside the scope of 
this analysis, many equally important management 
and analytic elements must also mature to guide effec-
tive use of MT techniques.

Management elements include command and con-
trol, decision support, and human interfaces required 
to properly direct the MT techniques.2 Largely unspec-
ified is the extent to and means by which humans will 
be involved in the command and control of these 
movements and what strategies, policies, and proce-
dures should be in place to trigger such movement. 
Of particular note, organizations will need means to 
understand how MT techniques fit into overall defen-
sive strategies. Whereas some techniques, such as 
address space layout randomization (ASLR), might be 
broadly applicable, others might require a connection 
to specific strategic objectives.

Consider a technique that migrates a vulnerable 
application across a diverse set of platforms. If attack-
ers need to compromise all platforms in the set to 
achieve the objective (for instance, continuous denial 
of service), migration indeed increases the number of 
exploits and attacker effort. On the other hand, if the 
attack requires a few CPU cycles on any single platform 

(for instance, to trigger a kinetic effect), migrating 
across platforms actually makes attacks easier: adversar-
ies need just one exploit from the full set of platforms.

Likewise, analytics are essential for developing a 
deeper understanding of how to best leverage the tech-
niques and for communicating relevant movement data 
to operators and management capabilities. For example, 
past work has looked at understanding adversaries’ and 
defenders’ predictability and tailoring MT techniques 
accordingly.3 Metrics are also required to measure the 
techniques’ effectiveness and assess real-time opera-
tional status. Existing entropy metrics might serve as a 
starting point for assessing the uncertainty presented by 
many techniques but provide a narrow and often mis-
leading view of a movement’s effectiveness.

In this article, we do not consider the applicabil-
ity of more general apparatuses for developing and 
understanding MT techniques, such as game theoretic 
approaches, experimentation, modeling, and simula-
tion; rather, we focus on the MT techniques themselves.

Techniques
The full spectrum of MT techniques operates over a 
variety of computer system aspects to change anything 
that can be changed. Some techniques attempt to hide 
a target from potential attackers, whereas others assume 

Notable Moving-Target Techniques

M any moving-target (MT) techniques and systems have 
been proposed and described in the literature, and a 

few have been implemented in the real world. One of our initial 
surveys identified more than 120 academic papers describing 
various cyber MT techniques,1 and tens of new papers are being 
added to this body of literature every year. A comprehensive list of 
techniques would require many pages for the references alone, and 
even a cursory description of the most prominent techniques in 
each domain would require more space than is available. How-
ever, we provide a short description of one technique in each MT 
domain—dynamic networks, dynamic platforms, dynamic runtime 
environments, dynamic software, and dynamic data—and men-
tion several others by name. Readers should refer to our survey for 
a longer list of MT techniques and their associated details.

Network address space randomization is a dynamic network 
technique that implements IP address randomization by modify-
ing a Dynamic Host Configuration Protocol (DHCP) server to 
assign short IP leases.2 A new IP address is assigned to each host as 
the previous short-term lease expires, with a goal of mitigating the 
propagation of hit-list worms. Other dynamic network techniques 
include Dynat for protocol obfuscation, DynaBone and Revere for 
dynamic routing, and Mute and Arcsyne for address hopping.

Moving-attack surface (MAS) is a dynamic platform technique 
that implements virtual server rotation for Web services.3 MAS 
creates a pool of virtual webservers with a diversified software 
stack (for example, IIS on Windows versus Apache on Red Hat) 
and assigns each incoming Web request to one of the virtual 
servers at random. Other mechanisms, such as anomalous event 
detectors, random timers, and lifespan timers, also trigger virtual 
server rotations to mitigate attacks on vulnerable webservers. 
Other dynamic platform techniques include the Security Agility 
Toolkit for dynamically changing platform access levels, Genesis for 
diversification at the virtual machine level, multivariant execution 
for platform-level voting on applications, Talent for migration-
based platform diversification, and several mechanisms to handle 
machine rotation.

Address space layout randomization (ASLR) is the most widely 
deployed dynamic runtime environment technique, having been 
implemented in a variety of mainstream server, desktop, and mobile 
platforms. The PaX team first implemented ASLR for Linux in 2001,4 
which was followed by integration into the Linux kernel in 2005 and 
into Windows and Mac OS X in 2007. ASLR implementations have 
steadily improved with newer operating systems: current 64-bit 

cont. on p. 18
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attackers will always find a way in and instead focus on 
limiting the damage.

Dynamically changing IP addresses, randomizing 
memory layouts, and temporarily encrypting the con-
tents of memory can all be considered MT techniques. 
A few techniques have seen mainstream acceptance 
and deployment, such as the implementation of ASLR 
in modern operating systems. Others such as port 
knocking, though well-described and well-tested, are 
used in more of an ad hoc fashion. The vast majority 
of proposed techniques have been studied only in aca-
demic papers and have never been tested or deployed 
in the real world. A comprehensive list of all tech-
niques is beyond this article’s scope; the Moving Target 
Defense books provide a starting point for research in 
this area.4,5

We categorize MT techniques into five major 
domains, according to the software stack model 

illustrated in Figure 1. Other categorizations are pos-
sible, but the rationale behind our approach focuses 
on each technique’s implementation. For example, 
although both the dynamic runtime environments 
domain and the dynamic platforms domain involve the 
operating system, techniques in the dynamic runtime 
environments domain actually modify operating sys-
tem internals, whereas dynamic platforms techniques 
leverage the differences between multiple, unmodified 
operating systems. 

Attack Phases
A second major differentiating characteristic among 
domains is the phase (or phases) of an attack that they 
seek to disrupt. Attacks necessarily proceed through 
multiple phases; we have chosen a five-phase attack kill 
chain to illustrate the major phases involved. Other valid 
kill chains exist, and various attack types might combine 

vanilla Linux kernels randomize the stack, heap, libraries, and main 
executable with 22, 13, 28, and 28 bits of entropy, respectively, and 
the newest 64-bit “high-entropy” mode in Windows 8 incorpo-
rates 33, 24, 19, and 17 bits of entropy, respectively. Other dynamic 
runtime environment techniques include address space layout 
permutation for a fine-grained version of memory randomization, 
DieHard(er) for heap allocator randomization, instruction-level 
memory randomization for internal stack and heap randomization, 
function pointer encryption for scrambling of computed branches, 
G-Free for return-oriented programming gadget removal, RISE and 
practical software dynamic translation for instruction encryption, 
and CIAS and RandSys for system call randomization.

Reverse stack is a dynamic software technique that creates two 
versions of a program executable during compilation, one with 
the stack growing in the reverse direction from the original.5 An 
execution monitor compares the original program’s outputs with 
its stack-reversed variant and searches for discrepancies to detect 
stack-based buffer overflow attacks. Other dynamic software 
techniques include proactive obfuscation for creating diversified 
application replicas, program differentiation for applying binary 
instruction-level modifications, and multicompiler techniques.

Redundant data diversity is a dynamic data technique that ran-
domizes the user and group identifiers (UIDs and GIDs) in a Linux 
system.6 This technique is implemented in the kernel by performing 
an XOR operation on UID and GID with a diversified bit string to 
detect privilege escalation or masquerading attacks that change the 
UID and GID values. Other dynamic data techniques include data 
and algorithm diversity techniques for fault tolerance, data random-
ization and other scrambling and encryption techniques to prevent 
data modifications, and a Web service data diversification technique 
to randomize webpage formats and document object models.

Appearing elsewhere in this issue are several other articles 
that relate to MT defenses. “Countering Intelligent Jamming with 
Full Protocol Stack Agility” explains a new protective dynamic 
networks technique designed to thwart intelligent jamming at-
tempts. “Defense on the Move: Ant-Based Cyber Defense” is a de-
fensive detector technique that incorporates aspects of dynamic 
software. “Managed Execution Environment as a Moving-Target 
Defense Infrastructure” describes an MT management and analy-
sis system that involves aspects of all five technique categories 
for both protective and detective capabilities. “Security through 
Diversity: Are We There Yet?” is a study of dynamic software chal-
lenges and progress and serves as a more detailed inspection of 
that domain.
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or divide some phases of our model, but we’ve found it 
sufficient and useful for discussion of MT domains and 
techniques:

 ■ Reconnaissance. This phase encompasses the means 
by which attackers find the target and collect basic 
information on it. It’s mainly limited to observation to 
learn more about a target. Examples include finding 
an appropriate spear-phishing target or determining a 
host’s location using basic IP scanning.

 ■ Access. This phase covers actions attackers take to col-
lect detailed information about a chosen target. For 
example, attackers might launch probes against a web-
server to determine the architecture, operating sys-
tem, exact server application version, or configuration.

 ■ Development. During this phase, attackers develop an 
attack that can exploit a vulnerability on a target. This 
phase can be performed offline without any involve-
ment of the target.

 ■ Launch. The launch phase involves attackers deliver-
ing the attack payload to the target to compromise it. 
The payload can be delivered via a variety of means, 
such as over a network or through infected media, 
and might come in many forms, such as an instance 
of malicious executable code or large volumes of oth-
erwise benign data intended to overwhelm a service 
on the target.

 ■ Persistence. If attackers mean to persist, this phase is 
used to ensure that they can maintain a foothold in 
the compromised system. One prominent example of 
ensuring persistence is installing other entry points 
(for example, backdoors) on the target.

Appropriate threat models are crucial to under-
standing the benefits and effectiveness of a given MT 
technique. In many cases, designers explicitly or implic-
itly provide a technique’s threat model. Techniques that 
lack well-defined threat models are of questionable 
effectiveness, since a technique can’t be evaluated with-
out appropriate context to understand what it is trying 
to defend against.

Dynamic Networks
Techniques in the dynamic networks domain continu-
ously modify network properties to increase the work-
load required and reduce the probability of success for 
network-borne attacks. Dynamic network modifica-
tions often focus on frequent changes to addresses and 
ports but might also include rotating protocols, using 
overlay routing networks, and changing the logical net-
work topology.

Dynamic network MT techniques are primarily 
intended to hinder attacker reconnaissance but might 
also play a role in preventing the launch of an attack. 
Such techniques can prevent attackers from discover-
ing an exploitable condition or invalidate the results 
of a previous scan before an attack can be developed. 
If attackers are aware of an exploitable condition, the 
attack might be undermined if the target is constantly 
shifting to new locations. An example of such a tech-
nique is Dynat,6 which attempts to mitigate scanning 
attacks by obfuscating parts of network packet head-
ers. Software-defined networking and overlay networks 
have also seen application in this area, such as with 
Revere,7 which uses a redundant overlay network to 

Figure 1. Moving-target (MT) techniques may be categorized into five different domains according to their place within the 
execution stack. Analytic and management components contribute to a feedback loop that can dynamically improve defense.
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dynamically distribute security updates without reli-
ance on a single central authority for all nodes.

However, such defensive techniques might hinder 
legitimate use of the system. Services that must reside 
at known network locations or remain otherwise 
reachable, and support well-defined public commu-
nications protocols (for example, a webserver), can’t 
use defenses that hinder easy accessibility without also 
sacrificing their core reason to exist. Other services 
that utilize the network only as an untrusted com-
munications channel have a wider range of options in 
their techniques.

A few dynamic network MT techniques have been 
employed in commercially available products. Others 
haven’t been widely adopted, although practical imple-
mentations are available. Content delivery networks 
are intended primarily to improve content load times 
through distribution and localization but also offer 
dynamic protection against denial-of-service attacks. 
By distributing an increasing load over an increasing 
number of servers as demand rises, a weak form of 
address hopping occurs: requests in particular locales 
are shunted to new servers, and the system remains 
available. At the other end of the scale, port knocking 
has been well-known for more than a decade but hasn’t 
been widely deployed. Advanced forms of port knock-
ing use dynamically generated port sequences to signal 
that a connection is desired, a technique that, ironically, 
attackers have used to maintain access to a machine 
once it’s compromised.

Weaknesses
The greatest weakness in dynamic network techniques is 
the lack of a well-defined threat model. If the technique 
creates a closed network—that is, prevents machines 
inside the network from connecting to those on the out-
side, and vice versa—the dynamic network will break 
the client–server model. Client–server models are fun-
damental to network communications and services, and 
any attempt to hide a public server or otherwise make 
it less accessible works against its very purpose. There 
are limits on how much obfuscation can be applied to 
network traffic without breaking the communications 
link.6 Moreover, virtual private networks (VPNs) can 
be used to create a closed network with stronger secu-
rity properties than dynamic networks when isolation 
is desirable.

On the other hand, if the technique maintains an 
open network in which machines can still communi-
cate with the outside, systems remain vulnerable to cli-
ent-side attacks in which the payload is delivered via a 
client-initiated session with a malicious server. Chang-
ing the network properties doesn’t interfere with the 
establishment of such a connection, and thus it has little 

value in preventing client-side attacks. Drive-by down-
loads are an example of client-side attacks.

Moreover, the effectiveness of randomization 
depends on the amount of uncertainty created for 
attackers. The uncertainty in a random value can be 
measured via the entropy, and entropy depends on 
the number of possible values for a random variable, 
and their probabilities. Limited entropy is a problem 
in many dynamic network techniques, particularly 
with regard to the Internet. Both IP addresses and 
port numbers are subject to strict constraints due to 
network infrastructure, even aside from the maxi-
mum number of values in the current technical speci-
fications. Even within the movement that is possible, 
the current network infrastructure isn’t well-suited to 
keep up with a fast-changing topology, and consider-
able overhead is incurred in doing so on closed net-
works with adjusted infrastructure.

Research Directions
Priority in dynamic networks MT research should 
be given to approaches that treat the network as an 
untrusted communication channel between known 
parties. When private entities are forced to com-
municate over public interfaces, particularly when 
VPN use is precluded, information leakage is inevi-
table through side channels, even if all other aspects 
of the communication are obscured. Techniques that 
attempt to mitigate these issues benefit our widely 
connected environments.

As applied to broader public networks, current 
dynamic network techniques have an ill-defined threat 
model and lack clear definitions that remain valid when 
confronted with the existing client–server architecture. 
These techniques provide minimal defensive benefits 
for considerable infrastructure overhead, and there is 
not yet a clear path to overcome these difficulties. Nev-
ertheless, new research in this area remains robust. We 
advise that researchers of new dynamic network tech-
niques give careful thought to the intended use case; the 
fundamental threat model must be clarified before new 
research on the broader space of dynamic networks can 
be of full use.

Dynamic Platforms
Techniques in the dynamic platforms domain change 
the properties of the computing platform in an effort to 
disrupt attacks that rely on specific platform characteris-
tics. The properties that can change include the operating 
system, processor architecture, virtual machine instance, 
storage systems, communication channels, and other 
low-level environmental factors. Techniques in this area 
might migrate applications from machine to machine 
or execute the same application in parallel in multiple 
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architectural contexts. An example of the former tech-
nique is Talent, which regularly migrates live applications 
across a large pool of machines running diff erent operat-
ing systems on diff erent architectures.8 N-variant systems 
are an example of the latt er, comparing multiple simul-
taneous versions of the same application and restarting 
them from known good 
states if they diverge.9

Dynamic plat-
forms techniques 
off er some defen-
sive  benefi ts against 
all fi ve phases of the 
att ack kill chain, but 
more protection is 
off ered in the access, 
development, and persis-
tence phases. Techniques in this domain are specifi cally 
intended to vary system properties exposed to att ackers 
during the access phase of the kill chain. Furthermore, 
exploit development is rendered substantially more diffi  -
cult for att ackers when exploits for multiple diverse plat-
forms are necessary to carry out an att ack, particularly if 
an application is running in parallel on multiple instances 
simultaneously. Finally, when an att ack is successful, the 
regular migration of applications to other platforms lim-
its att ackers’ ability to maintain useful persistence.

Dynamic platform techniques have received sub-
stantial att ention from the research community but 
have realized only limited deployment in the real world 
to date. A popular use case is to create transient plat-
forms using live bootable media or disposable virtual 
machine instances, although application state is usually 
discarded aft er each session rather than persisted to a 
new platform.

Weaknesses
Applications that require state to be maintained or syn-
chronized across platforms present a signifi cant chal-
lenge in the dynamic platforms domains, because state 
is extremely diffi  cult to extract from a running process 
in a platform-agnostic format unless the application is 
specifi cally designed to support it.8 Th e advent of cloud 
computing might result in more applications designed 
to this paradigm, but a more serious problem arises 
when transferring state: if att ackers are present, a full 
state transfer might allow them to persist in spite of the 
platform migration. A trade-off  might exist between 
migrating enough state to be useful and not enough 
state to allow att ackers to persist.

Another problem is that dynamic platform tech-
niques inevitably increase the att ack surface of the 
systems being protected. Extra code used to control 
and manage migrations creates more code that can be 

att acked. Perhaps more subtly, certain att ack models 
let att ackers benefi t from additional platforms, such as 
when att ackers seek to control an application running 
on a particular platform. A vulnerability might exist 
only on a certain platform, and att ackers need only con-
trol the application for a limited period of time to com-

plete a successful att ack. 
As additional platforms 

are included in the 
dynamic platform 
system, it becomes 
increasingly likely 
that a vulnerable 
platform will be 
exposed to att ackers 
and fall to a success-

ful compromise.
Finally, an implicit assumption of this domain is that 

a diverse pool of platforms actually exists. In actuality, 
a limited number of useful operating systems, architec-
tures, and platforms exist, and creating new ones is a 
nontrivial task. Two platforms might provide suffi  cient 
diversity for certain techniques in this domain, but the 
available variety remains a concern.

Research Directions
Scalability concerns must be addressed to open up a 
path to wide adoption of dynamic platform techniques. 
Specifi cally, automated mechanisms to create platform 
replicas are needed to populate platform pools in an 
aff ordable and scalable manner. Performance is also an 
issue, because movement between platforms is a heavy-
weight task that can impose signifi cant costs each time 
it occurs. Perhaps the greatest problem is the lack of a 
method to universally transfer application state in a 
platform-independent manner; there may be lessons to 
apply from the high-performance and distributed com-
puting communities.

Dynamic Runtime Environments
Techniques in the dynamic runtime environments 
domain randomize the environment in which the 
application operates and can be divided into two sub-
domains: address space randomization (ASR) and 
instruction set randomization (ISR). Techniques in this 
domain aim to prevent att ackers from exploiting soft -
ware vulnerabilities in order to compromise a machine. 
ASR techniques have achieved the greatest maturity 
of any MT technique to date across all domains in the 
form of ASLR, which has been commercially deployed 
in the real world. ASLR has received signifi cant att en-
tion in the literature and varying levels of support in 
modern operating systems and soft ware, and ASLR 
implementations of varying potency are now standard 

Address space randomization techniques 
have achieved the greatest maturity of any 

MT technique to date across all domains 
in the form of ASLR, which has been 

commercially deployed in the real world.
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on all major desktop operating systems as well as certain 
mobile systems.

ASR randomizes the layout of an application’s vir-
tual memory at runtime and is usually implemented 
through modifications to the core operating system, 
sometimes requiring additional support in the applica-
tion. For example, an ASR technique might change the 
base addresses of certain memory segments including 
the stack, heap, and shared libraries. Others might apply 
intrasegment randomization such as shuffling stack 
frames inside the stack.

Methods in the ASR subdomain seek to transform 
a deterministic memory layout into a randomized one. 
This prevents the attacker from being able to use a 
known memory address to redirect control flow or to 
read out a particular piece of data. Dynamic libraries 
represent an early implementation of a technique in this 
domain, because their construction allows any given 
library to be placed at a different virtual address within 
each process’s memory space.

ISR randomizes the actual instructions in an applica-
tion and might take place in the operating system, the 
application, or even the hardware. This stops attackers 
from predicting how the program will execute. One 
example technique in this space involves encrypting 
each instruction with a key chosen at load time, and 
then decrypting it immediately prior to execution.10

The techniques in this domain assume that attackers 
already have an exploitable vector into the program and 
thus aim to prevent attackers from completing the attack. 
They complicate the attack development and launch 
phases by making it more difficult to exploit memory 
corruption vulnerabilities. Buffer-overflow exploits are 
a notoriously common form of memory corruption and 
can be used to inject malicious code or hijack the con-
trol flow. When techniques in this domain aren’t applied, 
known instructions can be inserted at known locations 
(that is, code injection) or control might be redirected 
to existing instructions, also at known locations (such 
as code reuse or return-oriented programming). When 
techniques in this domain are applied, attackers can only 
guess the correct form of an injected instruction or the 
correct location of an existing or injected instruction. 
Although successful attacks can’t be blocked completely, 
the randomization aspects of dynamic runtime tech-
niques reduce the likelihood of success and help prevent 
large-scale attacks against multiple systems.

ASR Weaknesses
Despite the strong potential for ASR techniques to 
substantially increase the difficulty for attackers, sev-
eral weaknesses in current ASLR implementations 
have limited their effectiveness.11 One major weak-
ness is that only a portion of the application’s memory 

space is randomized in standard configurations; other 
portions remain static. For example, randomization 
of the dynamic libraries is common, but the base 
program image isn’t randomized by default. Attack-
ers can develop meaningful payloads using the static 
program image alone. A related problem with ASLR 
is that relative addresses in program segments often 
remain unchanged. It’s common practice to random-
ize only the base address of an entire memory segment 
and leave the individual portions of that segment in 
the same position relative to each other, thus allowing 
attacks to bypass ASLR defenses with the use of rela-
tive addresses.

ASR techniques typically operate with the assump-
tion that the contents of memory aren’t known to 
attackers. Attackers who can exploit a complementary 
memory disclosure vulnerability might be able to deter-
mine the randomized locations of objects and use those 
locations in later attack stages. Currently, no ASR tech-
niques can resist an arbitrary memory disclosure attack.

Limitations in available entropy present an addi-
tional weakness: the area over which an address is 
randomized is often too small in practice due to the 
defended system’s architectural limitations. Small 
memory spaces are vulnerable to brute-force attacks, 
in which addresses can be guessed until discovered, 
or heap-spraying attacks, which can fill large por-
tions of the address space with malicious objects. In 
many cases, attackers can complete brute-force attacks 
within minutes due to the relatively small address 
space of 32-bit operating systems11; modern 64-bit 
operating systems often offer improved but still sur-
prisingly low entropy.

ISR Weaknesses 
To date, performance overhead has been the great-
est barrier to the adoption of ISR techniques. Without 
pervasive hardware support, most ISR techniques must 
rely on software emulation and, as such, incur substan-
tial overhead. Non-MT defenses such as nonexecutable 
memory, which prevents a memory page from being 
both writable and executable, also protect against code 
injection. Nonexecutable memory is well-supported in 
hardware and has seen widespread adoption, suggest-
ing that similar hardware support for ISR techniques 
applied to popular architectures might lead to similar 
adoption and usage.

Related to the lack of hardware support, some ISR 
techniques rely on low-overhead methods such as a 
simple XOR operation to “encrypt” instructions. Use of 
XOR, or similar weak encryption methods, allows key 
recovery if attackers can read just one known instruc-
tion. Key recovery allows attackers to inject correctly 
encoded instructions of their own without difficulty.
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Research Directions
In the dynamic runtime environment domain, research-
ers must focus attention on the composition of compre-
hensive techniques that randomize all components of 
memory and thus prevent attackers from preying on the 
residual static components. They should also focus on 
increasing the spatial independence of objects within 
a given memory segment. This avenue of investigation 
will not only provide better protection against relative 
address–based attacks but also limit the usefulness of 
memory disclosure attacks: disclosing one object’s 
location wouldn’t necessarily disclose all other objects’ 
locations. The assumption of memory secrecy in gen-
eral must be examined, and new models that consider 
attackers with visibility into memory must be devel-
oped. Finally, researchers should reexamine ISR tech-
niques in light of new encryption hardware making its 
way into mainstream architectures, possibly providing 
an opportunity to revitalize the concepts with fewer 
performance penalties.

Dynamic Software
Techniques in the dynamic software domain modify 
the application such that the internal state is no longer 
deterministic relative only to the input, while ensur-
ing that functionality is unaffected. Diversification is 
achieved by substituting equivalent program instruc-
tion sequences for each other, changing the instruc-
tions’ order and format, rearranging the internal data 
structure layout, and otherwise altering formerly static 
properties of the application. Transformation of this 
nature reduces the applicability of specific instruction-
level exploits for a given piece of software and forces 
attackers to guess which software variant is in use. For 
example, Figure 2 shows two different but functionally 
equivalent instruction sequences.

These techniques can be applied on a gross or fine-
grained scale, either creating a corpus of semantically 
equivalent binaries for mass distribution or using a 
single application with its own internal randomization 
capability. External randomization can be applied at 
compile time or through binary rewriting. Several tech-
niques in this area propose a voting system in which 
two or more diversified binaries execute in parallel 
with identical input while a trusted execution monitor 
detects aberrant behavior in any of the variants.12 Other 
techniques, such as GenProg,13 attempt to dynamically 
patch software vulnerabilities as they’re discovered, 
rewriting application code to prevent exploitation.

Dynamic software techniques seek to disrupt an 
attack’s development and launch phases. Develop-
ment is hindered due to the uncertainty as to which 
code is being executed in any given software instance. 
Code injection and reuse become complicated due to 

the many variants. For an attack to succeed in all cases, 
attackers must discover a nonrandomized path to the 
application or use an exploit that doesn’t rely on specific 
code instructions and a static internal data structure 
layout. Probabilistic attacks might still yield positive 
results for attackers, but a trusted execution monitor 
can guard against that possibility.

Techniques in dynamic software aren’t widely 
deployed in the real world, and those techniques that 
do exist are largely limited to academic and research 
environments and aren’t available for wide-scale 
experimentation.

Weaknesses
A major weakness in the dynamic software domain is 
that it’s very difficult to ensure (automatically or oth-
erwise) that translated software provides functionality 
equivalent to the original. Heavyweight binary trans-
lation and emulation impose significant performance 
overhead, lack scalability, and might create unexpected 
side effects even while appearing to operate as expected. 
Compiler-based approaches allow greater confidence in 
the correctness of programs but can slow down perfor-
mance and create runtime inconsistencies between pro-
gram variants (even if not changing the overall result) 
that complicate dynamic comparisons.12 Furthermore, 
compiler-based approaches naturally require access to 
source code, which in turn necessitates continuous ven-
dor collaboration in the case of commercial software.

Techniques that employ an execution monitor 
supervising multiple variant applications are common 
in dynamic software and allow for greater security and 
detection capability with regard to that application. The 
price is increased performance overhead, especially 
in resource usage. Using an execution monitor also 
expands the attack surface and imposes a second point 
of failure.

Finally, many programs are crafted (and compiled) 
for maximum performance. Semantically equivalent 
programs created for these applications will result in 

Figure 2. Functionally equivalent instruction sequences in x86 assembly. Each 
uses different operations to produce the same intended result over the span 
of the entire sequence, but intermediate steps are not equivalent and cannot 
be used to produce the same unintended result by an attacker reusing the 
existing code.

Sequence 1 Sequence 2

xor eax, eax
shl ebx, 0x3

pop edx
jmp edx

mov eax, 0x0
imul ebx, ebx, 0x8

ret
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degraded performance. Real-time and high-perfor-
mance applications might not be able to tolerate such 
degradation in highly diversified binaries.

Research Directions
Compiler-based randomization is both comprehen-
sive and compatible with many techniques across other 
domains and is well-studied in other contexts. As such, 
focus on these techniques will likely yield the best results 
in this domain, although practical implementation 
depends on appropriate vendor support. Further research 
on binary-based translations or distribution channels 
that make it easy for vendors to distribute a diverse set 
of semantically equivalent binaries would allow diversi-
fied software to be deployed on a static basis among the 
user base. Such distribution, although not as beneficial as 
software that re-randomizes upon each invocation, is still 
a great improvement over the status quo.

Dynamic Data
Techniques in the dynamic data domain change the 
internal or external representation of an application’s 
data in such a way as to ensure that the semantic con-
tent is unmodified, but unauthorized use or access is 
hindered. This is accomplished by changing the format, 
syntax, encoding, and other properties of the data rep-
resentation. Attackers’ infiltration attempts might be 
rendered detectable when valid data is presented in an 
improper format, and exfiltration attempts might not 
yield data in a useful format.

Some techniques in this domain are rooted in meth-
ods originally designed to guard against data corrup-
tion, such as the data diversity technique described by 
Paul Ammann and John Knight,14 which is configured 
to run computations on multiple distinct data repre-
sentations and vote on the results to detect corrupted 
(malicious) input. Data encryption techniques, such as 
data randomization, encrypt portions of the application 
in memory to hinder data extraction and infiltration.15 
For example, Figure 3 shows the same data represented 
in two different ways.

Similar to those in the dynamic software domain, 
dynamic data techniques seek to complicate the 

development and launch phases of an attack. Attack 
development is impaired due to the difficulty in craft-
ing an appropriate payload for multiple data represen-
tations. An exploit that depends on a particular data 
format is less likely to succeed.

Almost all modern applications employ well-speci-
fied data layouts for their internal use, whereas I/O is 
largely limited to a selection of standard or custom data 
formats, as appropriate. No dynamic data techniques 
are deployed in the real world, and a survey of exist-
ing literature yields only a few examples, most of which 
focus on memory encryption or limited randomization 
of certain data (for instance, user identifiers).

Weaknesses
Techniques in this domain suffer from a lack of diver-
sity in allowable data encodings, because most standard 
binary formats support one canonical representation. 
The continuing desire within the computing community 
to standardize and facilitate easy communication means 
that new binary formats aren’t encouraged unless they 
fulfill an unmet need or offer substantial improvements 
over an old method. Even in text, where many canonical 
versions of the same information are possible, standard 
layouts are encouraged to improve interoperability.

The use of techniques that operate on a diversified 
set of data formats also results in an expansion of the 
attack surface. Each additional data format implicitly 
carries with it the need for new parsing capabilities and 
a new set of error-checking code. Furthermore, the pro-
liferation of new data formats will likely lead to a loss of 
compatibility, with standard data manipulation utilities 
that don’t understand the nonstandard formats—again, 
requiring the application to add new utility code instead 
of using well-tested standard libraries. 

All this new code might harbor new vulnerabilities, 
particularly if I/O is involved. Even when multiple for-
mats exist, their number might be insufficient to thwart 
attackers. Encryption methods provide sufficient pro-
tection of an application’s internal data state, but the 
continued lack of a practical homomorphic encryp-
tion scheme requires that all data be decrypted back 
to its original representation before any processing 
can be performed.15 This presents a window of vulner-
ability to attackers. From a more practical perspective, 
dynamic data techniques impose an increased burden 
on both application development and runtime per-
formance due to the need to process and monitor the 
diverse data representations.

Research Directions
Because of the expanded attack surface and increased 
code complexity when operating over diversified data 
formats, future research should be directed at finding 

Figure 3. The same data presented in two different formats. Diversity in data 
formatting can be used to complicate exploit development for an attacker.

Format 1 Format 2

<Age=23;
Gender=Male;
ID=132573;

Salary=$75000;>

<ID=00132573;
Gender=M;
Salary=75K;
Age=10111;>
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effective methods of data encryption for data residing 
in main memory. Applications that operate on only one 
canonical representation of data are more robust and 
secure than those operating on many diversified data 
representations, but the data need only be in its canoni-
cal form when actual operations are taking place. If the 
data is transformed when it isn’t being actively manip-
ulated, the window of vulnerability is reduced, and 
attackers can neither exfiltrate nor inject data in a useful 
form, so long as the encryption scheme is robust.

Further research into text-based external communica-
tions might also provide a means of attack detection and 
perhaps outright prevention. Text is no less vulnerable to 
the diversified data problems of binary formats, but the 
community has traditionally been willing to make extra 
allowances for textual data in parsing and manipulation, 
perhaps because it’s human understandable.

Discussion
Based on our analysis of the MT techniques’ strengths 
and weaknesses, we have identified three major proper-
ties for an effective defense—MT techniques should 
be comprehensive, timely, and unpredictable. Com-
prehensive defenses demand the inclusion of all com-
ponents that could be used in a given attack phase. As 
previously discussed, if an application randomizes the 
location of its library code but leaves the program image 
at a fixed location, it has failed to significantly improve 
its defensive posture. The application remains vulner-
able to a code reuse attack in which adversaries simply 
ignore the randomized code and target the fixed code.

MT defenses’ movements should also be timely 
with respect to adversary observation and attack points. 
If adversaries have an opportunity to observe the result 
of a movement, and that knowledge presents them with 
an opportunity to launch an attack, another movement 
must be made before they can complete the attack. 
In addition, if the MT defense relies on environmen-
tal diversity, it must expose attackers to this diversity 
within the relevant attack period.

Consider a dynamic platforms technique such as 
Talent,8 configured to migrate an application among 
three platforms. The defense is predicated on forcing 
attackers to exploit vulnerabilities on multiple, diverse 
platforms. If the migration time is less than the attack 
time, the technique has achieved its objective: attack-
ers must have a second vulnerability available on the 
new platform to continue the attack. However, if the 
migration time is greater than the attack time, the MT 
technique actually diminishes security because attack-
ers have a choice of three platforms in which to locate 
a vulnerability, rather than only a single, fixed platform.

Effective movements must also be unpredictable. If 
attackers can predict the next movement, then the move-
ment provides no additional security. If attackers can 
predict the movement with high probability, or if only 
a narrow range of movement is available, the movement 
provides only a small amount of additional security.

Threat models and use cases provide the necessary 
context for evaluating sufficient thresholds of unpre-
dictability. For example, in the case of an automatically 
respawning webserver, 16 bits of entropy in an ASLR 
implementation require only minutes to break through 
brute force. On the other hand, if a process must be 
manually restarted after each guess (because incorrect 
guesses likely cause segmentation faults), even a low 
amount of total entropy might not provide attackers 
with a significantly high probability of success in a rea-
sonable amount of time.

Table 1 provides a summary of the five domains bro-
ken down by the attack phases predominantly disrupted 
by techniques in that domain.

M T techniques, though currently underdevel-
oped, are important tools for defense against 

cyberattacks. Those few in active deployment that 
are still nascent have demonstrated the potential to 
increase the difficulty level for attackers. In combina-
tion, techniques from each of the five domains can 

Table 1. Primary attack phases disrupted by techniques in the five domains.

MT domains
Attack phases

Reconnaissance Access Development Launch Persistence

Dynamic networks ■ ■

Dynamic platforms ■ ■ ■

Dynamic runtime environments ■ ■

Dynamic software ■ ■

Dynamic data ■ ■
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guard against all phases of the attack kill chain and thus 
dramatically improve our cyber posture, though this 
requires a deep understanding and mitigation of their 
weaknesses and shortcomings.

Techniques in each of the five MT domains have var-
ious strengths and weaknesses. Some are most appropri-
ate for a specific mission in which needs are specialized 
and security is emphasized over performance. Others 
are well-suited for integration into our general-purpose 
computing environments, and the community should 
work to ensure that systems and applications have 
the appropriate mechanisms built in to support these. 
Many techniques need further development, and all 
require dedicated analysis.

However, the field is in a strong position to increase 
attacker workload, with both a growing research base 
and widespread deployments on which to build. 

Acknowledgments
We thank William Leonard and Mark Rabe for their signifi-
cant contributions to this work. This work is sponsored by the 
Department of Defense under Air Force Contract FA8721-
05-C-0002. Opinions, interpretations, conclusions, and 
recommendations are those of the authors and are not neces-
sarily endorsed by the US government.

References
1. “Cybersecurity Game-Change Research & Development 

Recommendations,” Networking and Information Tech-
nology Research and Development Program, May 2010; 
www.nitrd.gov/pubs/CSIA_IWG_%20Cybersecurity 
_%20GameChange_RD_%20Recommendations 
_20100513.pdf.

2. M. Carvalho et al., “Command and Control Require-
ments for Moving-Target Defense,” IEEE Intelligent Sys-
tems, vol. 27, no. 3, 2012, pp. 79–85.

3. R. Colbaugh and K. Glass, “Predictability-Oriented 
Defense against Adaptive Adversaries,” Proc. IEEE Int’l 
Conf. Systems, Man, and Cybernetics (SMC 12), 2012, pp. 
2721–2727.

4. S. Jajodia et al., eds., Moving Target Defense: Creating 
Asymmetric Uncertainty for Cyber Threats, Springer, 2011.

5. S. Jajodia et al., eds., Moving Target Defense II: Application 
of Game Theory and Adversarial Modeling, Springer, 2012.

6. D. Kewley et al., “Dynamic Approaches to Thwart Adver-
sary Intelligence Gathering,” Proc. DARPA Information 
Survivability Conference and Exposition II (DISCEX 01), 
vol. 1, 2001, pp. 176–185.

7. J. Li, P. Reiher, and G.J. Popek, “Resilient Self-Organizing 
Overlay Networks for Security Update Delivery,” IEEE J. 
Selected Areas in Communications, vol. 22, no. 1, 2004, pp. 
189–202.

8. H. Okhravi et al., “Creating a Cyber Moving Target for 
Critical Infrastructure Applications Using Platform 

Diversity,” Int’l J. Critical Infrastructure Protection, vol. 5, 
no. 1, 2012, pp. 30–39.

9. B. Cox et al., “N-Variant Systems: A Secretless Framework 
for Security through Diversity,” Proc. 15th Usenix Security 
Symp., 2006, pp. 105–120.

10. G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Countering 
Code-Injection Attacks with Instruction-Set Randomiza-
tion,” Proc. 10th ACM Conf. Computer and Communica-
tions Security (CCS 03), 2003, pp. 272–280.

11. L. Szekeres et al., “SoK: Eternal War in Memory,” Proc. 
IEEE Symp. Security and Privacy, 2013, pp. 48–62.

12. B. Salamat et al., “Runtime Defense against Code Injection 
Attacks Using Replicated Execution,” IEEE Trans. Depend-
able and Secure Computing, vol. 8, no. 4, 2011, pp. 588–601.

13. C. Le Goues et al., “GenProg: A Generic Method for 
Automatic Software Repair,” IEEE Trans. Software Eng., 
vol. 38, no. 1, 2012, pp. 54–72.

14. P.E. Ammann and J.C. Knight, “Data Diversity: An 
Approach to Software Fault Tolerance,” IEEE Trans. Com-
puters, vol. 37, no. 4, 1988, pp. 418–425.

15. C. Cadar et al., Data Randomization, tech. report MSR-
TR-2008-120, Microsoft Research, Sept. 2008.

Hamed Okhravi is a member of the technical staff at 
MIT Lincoln Laboratory. His research interests 
include systems security, science of security, security 
metrics, and operating systems. Okhravi received a 
PhD in electrical and computer engineering from the 
University of Illinois at Urbana-Champaign. Contact 
him at hamed.okhravi@ll.mit.edu.

Thomas Hobson is a member of the technical staff at MIT 
Lincoln Laboratory. His research interests include 
systems security, software security, and vulnerability 
analysis. Hobson received an MS in information secu-
rity from Carnegie Mellon University. Contact him at 
thomas.hobson@ll.mit.edu.

David Bigelow is a member of the technical staff at MIT 
Lincoln Laboratory. His research interests include 
operating systems, storage, real-time systems, high-
performance computing, and reliability. Bigelow 
received a PhD in computer science from the Uni-
versity of California, Santa Cruz. Contact him at 
 dbigelow@ll.mit.edu.

William Streilein is an assistant group leader in the 
Cyber Systems and Technology Group at MIT Lin-
coln Laboratory. His research interests include 
machine learning and modeling and simulation, espe-
cially as applied to problems in cybersecurity, security 
metrics, and cyber moving target. Streilein received 
a PhD in cognitive and neural systems from Boston 
University. Contact him at wws@ll.mit.edu.

j2okh.indd   26 3/14/14   9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore.  Restrictions apply. 


