
16 March/April 2014 Copublished by the IEEE Computer and Reliability Societies 1540-7993/14/$31.00 © 2014 IEEE

MOVING TARGET

Hamed Okhravi, Th omas Hobson, David Bigelow, and William Streilein | MIT Lincoln Laboratory

Moving-target (MT) techniques seek to randomize system components to reduce the likelihood of a
successful attack, add dynamics to a system to reduce the lifetime of an attack, and diversify otherwise
homogeneous collections of systems to limit the damage of a large-scale attack. In this article, we review
the fi ve dominant domains of MT techniques, consider the advantages and weaknesses of each, and make
recommendations for future research.

P rotecting critical systems and assets against cyber-
att acks is a continuous uphill batt le. Defend-

ers must protect a diverse landscape containing an
unknown number of vulnerabilities of various types,
whereas att ackers need only fi nd one or a few exploitable
vulnerabilities to compromise a system. Th e problem is
exacerbated by the uncomfortable reality that defenses
of ever-increasing complexity are oft en outmaneuvered
by simple, well-craft ed exploits. Consequently, research-
ers and policymakers have increased focus on rebalanc-
ing the competition in favor of defense. One potentially
promising approach is to create additional uncertainty
for att ackers by dynamically changing system properties
in what is called a cyber moving target (MT).

Cyber MT techniques att empt to make systems
less static, less homogeneous, and less deterministic
to increase att ackers’ workload. MT techniques seek
to randomize system components to reduce the likeli-
hood of a successful att ack, add dynamics to a system to
reduce the lifetime of an att ack, and diversify otherwise
homogeneous collections of systems to limit the damage
of a large-scale att ack.1 MT techniques are applicable to
all aspects of defense including deception, protection,

detection, and reaction. However, the majority of work
to date has focused on deception and protection.

Many MT techniques have been proposed in aca-
demic literature (see the “Notable Moving-Target
Techniques” sidebar); some were studied before the
term moving target was coined, and others have MT
implications without originally being intended for
that area. Unfortunately, although many eff orts have
focused on the design and implementation of new MT
techniques, litt le work has been done to evaluate their
practical eff ectiveness, understand the full scope of
their benefi ts, and enumerate and assess their gaps and
weaknesses. Th is article presents a summary of several
types of MT techniques, which we categorized into fi ve
major domains: dynamic networks, dynamic platforms,
dynamic runtime environments, dynamic soft ware, and
dynamic data.

Overview
Movement for defensive purposes has long been
studied and applied in the realm of physical con-
frontations, but its application to computing systems
is comparatively new. We examine techniques for

Finding Focus in the Blur
of Moving-Target Techniques

j2okh.indd 16 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 17

employing movement in computing systems, focus-
ing on techniques available as research prototypes and
commercial solutions. Although outside the scope of
this analysis, many equally important management
and analytic elements must also mature to guide effec-
tive use of MT techniques.

Management elements include command and con-
trol, decision support, and human interfaces required
to properly direct the MT techniques.2 Largely unspec-
ified is the extent to and means by which humans will
be involved in the command and control of these
movements and what strategies, policies, and proce-
dures should be in place to trigger such movement.
Of particular note, organizations will need means to
understand how MT techniques fit into overall defen-
sive strategies. Whereas some techniques, such as
address space layout randomization (ASLR), might be
broadly applicable, others might require a connection
to specific strategic objectives.

Consider a technique that migrates a vulnerable
application across a diverse set of platforms. If attack-
ers need to compromise all platforms in the set to
achieve the objective (for instance, continuous denial
of service), migration indeed increases the number of
exploits and attacker effort. On the other hand, if the
attack requires a few CPU cycles on any single platform

(for instance, to trigger a kinetic effect), migrating
across platforms actually makes attacks easier: adversar-
ies need just one exploit from the full set of platforms.

Likewise, analytics are essential for developing a
deeper understanding of how to best leverage the tech-
niques and for communicating relevant movement data
to operators and management capabilities. For example,
past work has looked at understanding adversaries’ and
defenders’ predictability and tailoring MT techniques
accordingly.3 Metrics are also required to measure the
techniques’ effectiveness and assess real-time opera-
tional status. Existing entropy metrics might serve as a
starting point for assessing the uncertainty presented by
many techniques but provide a narrow and often mis-
leading view of a movement’s effectiveness.

In this article, we do not consider the applicabil-
ity of more general apparatuses for developing and
understanding MT techniques, such as game theoretic
approaches, experimentation, modeling, and simula-
tion; rather, we focus on the MT techniques themselves.

Techniques
The full spectrum of MT techniques operates over a
variety of computer system aspects to change anything
that can be changed. Some techniques attempt to hide
a target from potential attackers, whereas others assume

Notable Moving-Target Techniques

M any moving-target (MT) techniques and systems have
been proposed and described in the literature, and a

few have been implemented in the real world. One of our initial
surveys identified more than 120 academic papers describing
various cyber MT techniques,1 and tens of new papers are being
added to this body of literature every year. A comprehensive list of
techniques would require many pages for the references alone, and
even a cursory description of the most prominent techniques in
each domain would require more space than is available. How-
ever, we provide a short description of one technique in each MT
domain—dynamic networks, dynamic platforms, dynamic runtime
environments, dynamic software, and dynamic data—and men-
tion several others by name. Readers should refer to our survey for
a longer list of MT techniques and their associated details.

Network address space randomization is a dynamic network
technique that implements IP address randomization by modify-
ing a Dynamic Host Configuration Protocol (DHCP) server to
assign short IP leases.2 A new IP address is assigned to each host as
the previous short-term lease expires, with a goal of mitigating the
propagation of hit-list worms. Other dynamic network techniques
include Dynat for protocol obfuscation, DynaBone and Revere for
dynamic routing, and Mute and Arcsyne for address hopping.

Moving-attack surface (MAS) is a dynamic platform technique
that implements virtual server rotation for Web services.3 MAS
creates a pool of virtual webservers with a diversified software
stack (for example, IIS on Windows versus Apache on Red Hat)
and assigns each incoming Web request to one of the virtual
servers at random. Other mechanisms, such as anomalous event
detectors, random timers, and lifespan timers, also trigger virtual
server rotations to mitigate attacks on vulnerable webservers.
Other dynamic platform techniques include the Security Agility
Toolkit for dynamically changing platform access levels, Genesis for
diversification at the virtual machine level, multivariant execution
for platform-level voting on applications, Talent for migration-
based platform diversification, and several mechanisms to handle
machine rotation.

Address space layout randomization (ASLR) is the most widely
deployed dynamic runtime environment technique, having been
implemented in a variety of mainstream server, desktop, and mobile
platforms. The PaX team first implemented ASLR for Linux in 2001,4
which was followed by integration into the Linux kernel in 2005 and
into Windows and Mac OS X in 2007. ASLR implementations have
steadily improved with newer operating systems: current 64-bit

cont. on p. 18

j2okh.indd 17 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

18 IEEE Security & Privacy March/April 2014

MOVING TARGET

attackers will always find a way in and instead focus on
limiting the damage.

Dynamically changing IP addresses, randomizing
memory layouts, and temporarily encrypting the con-
tents of memory can all be considered MT techniques.
A few techniques have seen mainstream acceptance
and deployment, such as the implementation of ASLR
in modern operating systems. Others such as port
knocking, though well-described and well-tested, are
used in more of an ad hoc fashion. The vast majority
of proposed techniques have been studied only in aca-
demic papers and have never been tested or deployed
in the real world. A comprehensive list of all tech-
niques is beyond this article’s scope; the Moving Target
Defense books provide a starting point for research in
this area.4,5

We categorize MT techniques into five major
domains, according to the software stack model

illustrated in Figure 1. Other categorizations are pos-
sible, but the rationale behind our approach focuses
on each technique’s implementation. For example,
although both the dynamic runtime environments
domain and the dynamic platforms domain involve the
operating system, techniques in the dynamic runtime
environments domain actually modify operating sys-
tem internals, whereas dynamic platforms techniques
leverage the differences between multiple, unmodified
operating systems.

Attack Phases
A second major differentiating characteristic among
domains is the phase (or phases) of an attack that they
seek to disrupt. Attacks necessarily proceed through
multiple phases; we have chosen a five-phase attack kill
chain to illustrate the major phases involved. Other valid
kill chains exist, and various attack types might combine

vanilla Linux kernels randomize the stack, heap, libraries, and main
executable with 22, 13, 28, and 28 bits of entropy, respectively, and
the newest 64-bit “high-entropy” mode in Windows 8 incorpo-
rates 33, 24, 19, and 17 bits of entropy, respectively. Other dynamic
runtime environment techniques include address space layout
permutation for a fine-grained version of memory randomization,
DieHard(er) for heap allocator randomization, instruction-level
memory randomization for internal stack and heap randomization,
function pointer encryption for scrambling of computed branches,
G-Free for return-oriented programming gadget removal, RISE and
practical software dynamic translation for instruction encryption,
and CIAS and RandSys for system call randomization.

Reverse stack is a dynamic software technique that creates two
versions of a program executable during compilation, one with
the stack growing in the reverse direction from the original.5 An
execution monitor compares the original program’s outputs with
its stack-reversed variant and searches for discrepancies to detect
stack-based buffer overflow attacks. Other dynamic software
techniques include proactive obfuscation for creating diversified
application replicas, program differentiation for applying binary
instruction-level modifications, and multicompiler techniques.

Redundant data diversity is a dynamic data technique that ran-
domizes the user and group identifiers (UIDs and GIDs) in a Linux
system.6 This technique is implemented in the kernel by performing
an XOR operation on UID and GID with a diversified bit string to
detect privilege escalation or masquerading attacks that change the
UID and GID values. Other dynamic data techniques include data
and algorithm diversity techniques for fault tolerance, data random-
ization and other scrambling and encryption techniques to prevent
data modifications, and a Web service data diversification technique
to randomize webpage formats and document object models.

Appearing elsewhere in this issue are several other articles
that relate to MT defenses. “Countering Intelligent Jamming with
Full Protocol Stack Agility” explains a new protective dynamic
networks technique designed to thwart intelligent jamming at-
tempts. “Defense on the Move: Ant-Based Cyber Defense” is a de-
fensive detector technique that incorporates aspects of dynamic
software. “Managed Execution Environment as a Moving-Target
Defense Infrastructure” describes an MT management and analy-
sis system that involves aspects of all five technique categories
for both protective and detective capabilities. “Security through
Diversity: Are We There Yet?” is a study of dynamic software chal-
lenges and progress and serves as a more detailed inspection of
that domain.

References
1. H. Okhravi et al., Survey of Cyber Moving Targets, tech. report

1166, MIT Lincoln Laboratory, Sept. 2013.
2. S. Antonatos et al., “Defending against Hitlist Worms Using Net-

work Address Space Randomization,” Computer Networks, vol.
51, no. 12, 2007, pp. 3471–3490.

3. Y. Huang and A. Ghosh, “Automating Intrusion Response via Vir-
tualization for Realizing Uninterruptible Web Services,” Proc. 8th
IEEE Int’l Symp. Network Computing and Applications (NCA 09),
2009, pp. 114–117.

4. “PaX Address Space Layout Randomization,” PaX, 2003; http://
pax.grsecurity.net/docs/aslr.txt.

5. A.G. Salamat and M. Franz, “Reverse Stack Execution in a Multi-
variant Execution Environment,” Workshop Compiler and Archi-
tectural Techniques for Application Reliability and Security, 2008.

6. A. Nguyen-Tuong et al., “Security through Redundant Data
Diversity,” Proc. IEEE Int’l Conf. Dependable Systems and Networks
with FTCS and DCC (DSN 08), 2008, pp. 187–196.

cont. from p. 17

j2okh.indd 18 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 19

or divide some phases of our model, but we’ve found it
sufficient and useful for discussion of MT domains and
techniques:

 ■ Reconnaissance. This phase encompasses the means
by which attackers find the target and collect basic
information on it. It’s mainly limited to observation to
learn more about a target. Examples include finding
an appropriate spear-phishing target or determining a
host’s location using basic IP scanning.

 ■ Access. This phase covers actions attackers take to col-
lect detailed information about a chosen target. For
example, attackers might launch probes against a web-
server to determine the architecture, operating sys-
tem, exact server application version, or configuration.

 ■ Development. During this phase, attackers develop an
attack that can exploit a vulnerability on a target. This
phase can be performed offline without any involve-
ment of the target.

 ■ Launch. The launch phase involves attackers deliver-
ing the attack payload to the target to compromise it.
The payload can be delivered via a variety of means,
such as over a network or through infected media,
and might come in many forms, such as an instance
of malicious executable code or large volumes of oth-
erwise benign data intended to overwhelm a service
on the target.

 ■ Persistence. If attackers mean to persist, this phase is
used to ensure that they can maintain a foothold in
the compromised system. One prominent example of
ensuring persistence is installing other entry points
(for example, backdoors) on the target.

Appropriate threat models are crucial to under-
standing the benefits and effectiveness of a given MT
technique. In many cases, designers explicitly or implic-
itly provide a technique’s threat model. Techniques that
lack well-defined threat models are of questionable
effectiveness, since a technique can’t be evaluated with-
out appropriate context to understand what it is trying
to defend against.

Dynamic Networks
Techniques in the dynamic networks domain continu-
ously modify network properties to increase the work-
load required and reduce the probability of success for
network-borne attacks. Dynamic network modifica-
tions often focus on frequent changes to addresses and
ports but might also include rotating protocols, using
overlay routing networks, and changing the logical net-
work topology.

Dynamic network MT techniques are primarily
intended to hinder attacker reconnaissance but might
also play a role in preventing the launch of an attack.
Such techniques can prevent attackers from discover-
ing an exploitable condition or invalidate the results
of a previous scan before an attack can be developed.
If attackers are aware of an exploitable condition, the
attack might be undermined if the target is constantly
shifting to new locations. An example of such a tech-
nique is Dynat,6 which attempts to mitigate scanning
attacks by obfuscating parts of network packet head-
ers. Software-defined networking and overlay networks
have also seen application in this area, such as with
Revere,7 which uses a redundant overlay network to

Figure 1. Moving-target (MT) techniques may be categorized into five different domains according to their place within the
execution stack. Analytic and management components contribute to a feedback loop that can dynamically improve defense.

Data

Software application

Operating system

MT techniques

Hardware
Memory Processor Network

Runtime environment

Dynamic data
Changes data format or representation

Dynamic software
Changes application code

Dynamic platform
Changes platform properties

Dynamic network
Changes network properties

and configurations

Dynamic runtime environment
Changes execution environment

MT analytics MT management

j2okh.indd 19 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

20 IEEE Security & Privacy March/April 2014

MOVING TARGET

dynamically distribute security updates without reli-
ance on a single central authority for all nodes.

However, such defensive techniques might hinder
legitimate use of the system. Services that must reside
at known network locations or remain otherwise
reachable, and support well-defined public commu-
nications protocols (for example, a webserver), can’t
use defenses that hinder easy accessibility without also
sacrificing their core reason to exist. Other services
that utilize the network only as an untrusted com-
munications channel have a wider range of options in
their techniques.

A few dynamic network MT techniques have been
employed in commercially available products. Others
haven’t been widely adopted, although practical imple-
mentations are available. Content delivery networks
are intended primarily to improve content load times
through distribution and localization but also offer
dynamic protection against denial-of-service attacks.
By distributing an increasing load over an increasing
number of servers as demand rises, a weak form of
address hopping occurs: requests in particular locales
are shunted to new servers, and the system remains
available. At the other end of the scale, port knocking
has been well-known for more than a decade but hasn’t
been widely deployed. Advanced forms of port knock-
ing use dynamically generated port sequences to signal
that a connection is desired, a technique that, ironically,
attackers have used to maintain access to a machine
once it’s compromised.

Weaknesses
The greatest weakness in dynamic network techniques is
the lack of a well-defined threat model. If the technique
creates a closed network—that is, prevents machines
inside the network from connecting to those on the out-
side, and vice versa—the dynamic network will break
the client–server model. Client–server models are fun-
damental to network communications and services, and
any attempt to hide a public server or otherwise make
it less accessible works against its very purpose. There
are limits on how much obfuscation can be applied to
network traffic without breaking the communications
link.6 Moreover, virtual private networks (VPNs) can
be used to create a closed network with stronger secu-
rity properties than dynamic networks when isolation
is desirable.

On the other hand, if the technique maintains an
open network in which machines can still communi-
cate with the outside, systems remain vulnerable to cli-
ent-side attacks in which the payload is delivered via a
client-initiated session with a malicious server. Chang-
ing the network properties doesn’t interfere with the
establishment of such a connection, and thus it has little

value in preventing client-side attacks. Drive-by down-
loads are an example of client-side attacks.

Moreover, the effectiveness of randomization
depends on the amount of uncertainty created for
attackers. The uncertainty in a random value can be
measured via the entropy, and entropy depends on
the number of possible values for a random variable,
and their probabilities. Limited entropy is a problem
in many dynamic network techniques, particularly
with regard to the Internet. Both IP addresses and
port numbers are subject to strict constraints due to
network infrastructure, even aside from the maxi-
mum number of values in the current technical speci-
fications. Even within the movement that is possible,
the current network infrastructure isn’t well-suited to
keep up with a fast-changing topology, and consider-
able overhead is incurred in doing so on closed net-
works with adjusted infrastructure.

Research Directions
Priority in dynamic networks MT research should
be given to approaches that treat the network as an
untrusted communication channel between known
parties. When private entities are forced to com-
municate over public interfaces, particularly when
VPN use is precluded, information leakage is inevi-
table through side channels, even if all other aspects
of the communication are obscured. Techniques that
attempt to mitigate these issues benefit our widely
connected environments.

As applied to broader public networks, current
dynamic network techniques have an ill-defined threat
model and lack clear definitions that remain valid when
confronted with the existing client–server architecture.
These techniques provide minimal defensive benefits
for considerable infrastructure overhead, and there is
not yet a clear path to overcome these difficulties. Nev-
ertheless, new research in this area remains robust. We
advise that researchers of new dynamic network tech-
niques give careful thought to the intended use case; the
fundamental threat model must be clarified before new
research on the broader space of dynamic networks can
be of full use.

Dynamic Platforms
Techniques in the dynamic platforms domain change
the properties of the computing platform in an effort to
disrupt attacks that rely on specific platform characteris-
tics. The properties that can change include the operating
system, processor architecture, virtual machine instance,
storage systems, communication channels, and other
low-level environmental factors. Techniques in this area
might migrate applications from machine to machine
or execute the same application in parallel in multiple

j2okh.indd 20 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 21

architectural contexts. An example of the former tech-
nique is Talent, which regularly migrates live applications
across a large pool of machines running diff erent operat-
ing systems on diff erent architectures.8 N-variant systems
are an example of the latt er, comparing multiple simul-
taneous versions of the same application and restarting
them from known good
states if they diverge.9

Dynamic plat-
forms techniques
off er some defen-
sive benefi ts against
all fi ve phases of the
att ack kill chain, but
more protection is
off ered in the access,
development, and persis-
tence phases. Techniques in this domain are specifi cally
intended to vary system properties exposed to att ackers
during the access phase of the kill chain. Furthermore,
exploit development is rendered substantially more diffi -
cult for att ackers when exploits for multiple diverse plat-
forms are necessary to carry out an att ack, particularly if
an application is running in parallel on multiple instances
simultaneously. Finally, when an att ack is successful, the
regular migration of applications to other platforms lim-
its att ackers’ ability to maintain useful persistence.

Dynamic platform techniques have received sub-
stantial att ention from the research community but
have realized only limited deployment in the real world
to date. A popular use case is to create transient plat-
forms using live bootable media or disposable virtual
machine instances, although application state is usually
discarded aft er each session rather than persisted to a
new platform.

Weaknesses
Applications that require state to be maintained or syn-
chronized across platforms present a signifi cant chal-
lenge in the dynamic platforms domains, because state
is extremely diffi cult to extract from a running process
in a platform-agnostic format unless the application is
specifi cally designed to support it.8 Th e advent of cloud
computing might result in more applications designed
to this paradigm, but a more serious problem arises
when transferring state: if att ackers are present, a full
state transfer might allow them to persist in spite of the
platform migration. A trade-off might exist between
migrating enough state to be useful and not enough
state to allow att ackers to persist.

Another problem is that dynamic platform tech-
niques inevitably increase the att ack surface of the
systems being protected. Extra code used to control
and manage migrations creates more code that can be

att acked. Perhaps more subtly, certain att ack models
let att ackers benefi t from additional platforms, such as
when att ackers seek to control an application running
on a particular platform. A vulnerability might exist
only on a certain platform, and att ackers need only con-
trol the application for a limited period of time to com-

plete a successful att ack.
As additional platforms

are included in the
dynamic platform
system, it becomes
increasingly likely
that a vulnerable
platform will be
exposed to att ackers
and fall to a success-

ful compromise.
Finally, an implicit assumption of this domain is that

a diverse pool of platforms actually exists. In actuality,
a limited number of useful operating systems, architec-
tures, and platforms exist, and creating new ones is a
nontrivial task. Two platforms might provide suffi cient
diversity for certain techniques in this domain, but the
available variety remains a concern.

Research Directions
Scalability concerns must be addressed to open up a
path to wide adoption of dynamic platform techniques.
Specifi cally, automated mechanisms to create platform
replicas are needed to populate platform pools in an
aff ordable and scalable manner. Performance is also an
issue, because movement between platforms is a heavy-
weight task that can impose signifi cant costs each time
it occurs. Perhaps the greatest problem is the lack of a
method to universally transfer application state in a
platform-independent manner; there may be lessons to
apply from the high-performance and distributed com-
puting communities.

Dynamic Runtime Environments
Techniques in the dynamic runtime environments
domain randomize the environment in which the
application operates and can be divided into two sub-
domains: address space randomization (ASR) and
instruction set randomization (ISR). Techniques in this
domain aim to prevent att ackers from exploiting soft -
ware vulnerabilities in order to compromise a machine.
ASR techniques have achieved the greatest maturity
of any MT technique to date across all domains in the
form of ASLR, which has been commercially deployed
in the real world. ASLR has received signifi cant att en-
tion in the literature and varying levels of support in
modern operating systems and soft ware, and ASLR
implementations of varying potency are now standard

Address space randomization techniques
have achieved the greatest maturity of any

MT technique to date across all domains
in the form of ASLR, which has been

commercially deployed in the real world.

j2okh.indd 21 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

22 IEEE Security & Privacy March/April 2014

MOVING TARGET

on all major desktop operating systems as well as certain
mobile systems.

ASR randomizes the layout of an application’s vir-
tual memory at runtime and is usually implemented
through modifications to the core operating system,
sometimes requiring additional support in the applica-
tion. For example, an ASR technique might change the
base addresses of certain memory segments including
the stack, heap, and shared libraries. Others might apply
intrasegment randomization such as shuffling stack
frames inside the stack.

Methods in the ASR subdomain seek to transform
a deterministic memory layout into a randomized one.
This prevents the attacker from being able to use a
known memory address to redirect control flow or to
read out a particular piece of data. Dynamic libraries
represent an early implementation of a technique in this
domain, because their construction allows any given
library to be placed at a different virtual address within
each process’s memory space.

ISR randomizes the actual instructions in an applica-
tion and might take place in the operating system, the
application, or even the hardware. This stops attackers
from predicting how the program will execute. One
example technique in this space involves encrypting
each instruction with a key chosen at load time, and
then decrypting it immediately prior to execution.10

The techniques in this domain assume that attackers
already have an exploitable vector into the program and
thus aim to prevent attackers from completing the attack.
They complicate the attack development and launch
phases by making it more difficult to exploit memory
corruption vulnerabilities. Buffer-overflow exploits are
a notoriously common form of memory corruption and
can be used to inject malicious code or hijack the con-
trol flow. When techniques in this domain aren’t applied,
known instructions can be inserted at known locations
(that is, code injection) or control might be redirected
to existing instructions, also at known locations (such
as code reuse or return-oriented programming). When
techniques in this domain are applied, attackers can only
guess the correct form of an injected instruction or the
correct location of an existing or injected instruction.
Although successful attacks can’t be blocked completely,
the randomization aspects of dynamic runtime tech-
niques reduce the likelihood of success and help prevent
large-scale attacks against multiple systems.

ASR Weaknesses
Despite the strong potential for ASR techniques to
substantially increase the difficulty for attackers, sev-
eral weaknesses in current ASLR implementations
have limited their effectiveness.11 One major weak-
ness is that only a portion of the application’s memory

space is randomized in standard configurations; other
portions remain static. For example, randomization
of the dynamic libraries is common, but the base
program image isn’t randomized by default. Attack-
ers can develop meaningful payloads using the static
program image alone. A related problem with ASLR
is that relative addresses in program segments often
remain unchanged. It’s common practice to random-
ize only the base address of an entire memory segment
and leave the individual portions of that segment in
the same position relative to each other, thus allowing
attacks to bypass ASLR defenses with the use of rela-
tive addresses.

ASR techniques typically operate with the assump-
tion that the contents of memory aren’t known to
attackers. Attackers who can exploit a complementary
memory disclosure vulnerability might be able to deter-
mine the randomized locations of objects and use those
locations in later attack stages. Currently, no ASR tech-
niques can resist an arbitrary memory disclosure attack.

Limitations in available entropy present an addi-
tional weakness: the area over which an address is
randomized is often too small in practice due to the
defended system’s architectural limitations. Small
memory spaces are vulnerable to brute-force attacks,
in which addresses can be guessed until discovered,
or heap-spraying attacks, which can fill large por-
tions of the address space with malicious objects. In
many cases, attackers can complete brute-force attacks
within minutes due to the relatively small address
space of 32-bit operating systems11; modern 64-bit
operating systems often offer improved but still sur-
prisingly low entropy.

ISR Weaknesses
To date, performance overhead has been the great-
est barrier to the adoption of ISR techniques. Without
pervasive hardware support, most ISR techniques must
rely on software emulation and, as such, incur substan-
tial overhead. Non-MT defenses such as nonexecutable
memory, which prevents a memory page from being
both writable and executable, also protect against code
injection. Nonexecutable memory is well-supported in
hardware and has seen widespread adoption, suggest-
ing that similar hardware support for ISR techniques
applied to popular architectures might lead to similar
adoption and usage.

Related to the lack of hardware support, some ISR
techniques rely on low-overhead methods such as a
simple XOR operation to “encrypt” instructions. Use of
XOR, or similar weak encryption methods, allows key
recovery if attackers can read just one known instruc-
tion. Key recovery allows attackers to inject correctly
encoded instructions of their own without difficulty.

j2okh.indd 22 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 23

Research Directions
In the dynamic runtime environment domain, research-
ers must focus attention on the composition of compre-
hensive techniques that randomize all components of
memory and thus prevent attackers from preying on the
residual static components. They should also focus on
increasing the spatial independence of objects within
a given memory segment. This avenue of investigation
will not only provide better protection against relative
address–based attacks but also limit the usefulness of
memory disclosure attacks: disclosing one object’s
location wouldn’t necessarily disclose all other objects’
locations. The assumption of memory secrecy in gen-
eral must be examined, and new models that consider
attackers with visibility into memory must be devel-
oped. Finally, researchers should reexamine ISR tech-
niques in light of new encryption hardware making its
way into mainstream architectures, possibly providing
an opportunity to revitalize the concepts with fewer
performance penalties.

Dynamic Software
Techniques in the dynamic software domain modify
the application such that the internal state is no longer
deterministic relative only to the input, while ensur-
ing that functionality is unaffected. Diversification is
achieved by substituting equivalent program instruc-
tion sequences for each other, changing the instruc-
tions’ order and format, rearranging the internal data
structure layout, and otherwise altering formerly static
properties of the application. Transformation of this
nature reduces the applicability of specific instruction-
level exploits for a given piece of software and forces
attackers to guess which software variant is in use. For
example, Figure 2 shows two different but functionally
equivalent instruction sequences.

These techniques can be applied on a gross or fine-
grained scale, either creating a corpus of semantically
equivalent binaries for mass distribution or using a
single application with its own internal randomization
capability. External randomization can be applied at
compile time or through binary rewriting. Several tech-
niques in this area propose a voting system in which
two or more diversified binaries execute in parallel
with identical input while a trusted execution monitor
detects aberrant behavior in any of the variants.12 Other
techniques, such as GenProg,13 attempt to dynamically
patch software vulnerabilities as they’re discovered,
rewriting application code to prevent exploitation.

Dynamic software techniques seek to disrupt an
attack’s development and launch phases. Develop-
ment is hindered due to the uncertainty as to which
code is being executed in any given software instance.
Code injection and reuse become complicated due to

the many variants. For an attack to succeed in all cases,
attackers must discover a nonrandomized path to the
application or use an exploit that doesn’t rely on specific
code instructions and a static internal data structure
layout. Probabilistic attacks might still yield positive
results for attackers, but a trusted execution monitor
can guard against that possibility.

Techniques in dynamic software aren’t widely
deployed in the real world, and those techniques that
do exist are largely limited to academic and research
environments and aren’t available for wide-scale
experimentation.

Weaknesses
A major weakness in the dynamic software domain is
that it’s very difficult to ensure (automatically or oth-
erwise) that translated software provides functionality
equivalent to the original. Heavyweight binary trans-
lation and emulation impose significant performance
overhead, lack scalability, and might create unexpected
side effects even while appearing to operate as expected.
Compiler-based approaches allow greater confidence in
the correctness of programs but can slow down perfor-
mance and create runtime inconsistencies between pro-
gram variants (even if not changing the overall result)
that complicate dynamic comparisons.12 Furthermore,
compiler-based approaches naturally require access to
source code, which in turn necessitates continuous ven-
dor collaboration in the case of commercial software.

Techniques that employ an execution monitor
supervising multiple variant applications are common
in dynamic software and allow for greater security and
detection capability with regard to that application. The
price is increased performance overhead, especially
in resource usage. Using an execution monitor also
expands the attack surface and imposes a second point
of failure.

Finally, many programs are crafted (and compiled)
for maximum performance. Semantically equivalent
programs created for these applications will result in

Figure 2. Functionally equivalent instruction sequences in x86 assembly. Each
uses different operations to produce the same intended result over the span
of the entire sequence, but intermediate steps are not equivalent and cannot
be used to produce the same unintended result by an attacker reusing the
existing code.

Sequence 1 Sequence 2

xor eax, eax
shl ebx, 0x3

pop edx
jmp edx

mov eax, 0x0
imul ebx, ebx, 0x8

ret

j2okh.indd 23 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

24 IEEE Security & Privacy March/April 2014

MOVING TARGET

degraded performance. Real-time and high-perfor-
mance applications might not be able to tolerate such
degradation in highly diversified binaries.

Research Directions
Compiler-based randomization is both comprehen-
sive and compatible with many techniques across other
domains and is well-studied in other contexts. As such,
focus on these techniques will likely yield the best results
in this domain, although practical implementation
depends on appropriate vendor support. Further research
on binary-based translations or distribution channels
that make it easy for vendors to distribute a diverse set
of semantically equivalent binaries would allow diversi-
fied software to be deployed on a static basis among the
user base. Such distribution, although not as beneficial as
software that re-randomizes upon each invocation, is still
a great improvement over the status quo.

Dynamic Data
Techniques in the dynamic data domain change the
internal or external representation of an application’s
data in such a way as to ensure that the semantic con-
tent is unmodified, but unauthorized use or access is
hindered. This is accomplished by changing the format,
syntax, encoding, and other properties of the data rep-
resentation. Attackers’ infiltration attempts might be
rendered detectable when valid data is presented in an
improper format, and exfiltration attempts might not
yield data in a useful format.

Some techniques in this domain are rooted in meth-
ods originally designed to guard against data corrup-
tion, such as the data diversity technique described by
Paul Ammann and John Knight,14 which is configured
to run computations on multiple distinct data repre-
sentations and vote on the results to detect corrupted
(malicious) input. Data encryption techniques, such as
data randomization, encrypt portions of the application
in memory to hinder data extraction and infiltration.15
For example, Figure 3 shows the same data represented
in two different ways.

Similar to those in the dynamic software domain,
dynamic data techniques seek to complicate the

development and launch phases of an attack. Attack
development is impaired due to the difficulty in craft-
ing an appropriate payload for multiple data represen-
tations. An exploit that depends on a particular data
format is less likely to succeed.

Almost all modern applications employ well-speci-
fied data layouts for their internal use, whereas I/O is
largely limited to a selection of standard or custom data
formats, as appropriate. No dynamic data techniques
are deployed in the real world, and a survey of exist-
ing literature yields only a few examples, most of which
focus on memory encryption or limited randomization
of certain data (for instance, user identifiers).

Weaknesses
Techniques in this domain suffer from a lack of diver-
sity in allowable data encodings, because most standard
binary formats support one canonical representation.
The continuing desire within the computing community
to standardize and facilitate easy communication means
that new binary formats aren’t encouraged unless they
fulfill an unmet need or offer substantial improvements
over an old method. Even in text, where many canonical
versions of the same information are possible, standard
layouts are encouraged to improve interoperability.

The use of techniques that operate on a diversified
set of data formats also results in an expansion of the
attack surface. Each additional data format implicitly
carries with it the need for new parsing capabilities and
a new set of error-checking code. Furthermore, the pro-
liferation of new data formats will likely lead to a loss of
compatibility, with standard data manipulation utilities
that don’t understand the nonstandard formats—again,
requiring the application to add new utility code instead
of using well-tested standard libraries.

All this new code might harbor new vulnerabilities,
particularly if I/O is involved. Even when multiple for-
mats exist, their number might be insufficient to thwart
attackers. Encryption methods provide sufficient pro-
tection of an application’s internal data state, but the
continued lack of a practical homomorphic encryp-
tion scheme requires that all data be decrypted back
to its original representation before any processing
can be performed.15 This presents a window of vulner-
ability to attackers. From a more practical perspective,
dynamic data techniques impose an increased burden
on both application development and runtime per-
formance due to the need to process and monitor the
diverse data representations.

Research Directions
Because of the expanded attack surface and increased
code complexity when operating over diversified data
formats, future research should be directed at finding

Figure 3. The same data presented in two different formats. Diversity in data
formatting can be used to complicate exploit development for an attacker.

Format 1 Format 2

<Age=23;
Gender=Male;
ID=132573;

Salary=$75000;>

<ID=00132573;
Gender=M;
Salary=75K;
Age=10111;>

j2okh.indd 24 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 25

effective methods of data encryption for data residing
in main memory. Applications that operate on only one
canonical representation of data are more robust and
secure than those operating on many diversified data
representations, but the data need only be in its canoni-
cal form when actual operations are taking place. If the
data is transformed when it isn’t being actively manip-
ulated, the window of vulnerability is reduced, and
attackers can neither exfiltrate nor inject data in a useful
form, so long as the encryption scheme is robust.

Further research into text-based external communica-
tions might also provide a means of attack detection and
perhaps outright prevention. Text is no less vulnerable to
the diversified data problems of binary formats, but the
community has traditionally been willing to make extra
allowances for textual data in parsing and manipulation,
perhaps because it’s human understandable.

Discussion
Based on our analysis of the MT techniques’ strengths
and weaknesses, we have identified three major proper-
ties for an effective defense—MT techniques should
be comprehensive, timely, and unpredictable. Com-
prehensive defenses demand the inclusion of all com-
ponents that could be used in a given attack phase. As
previously discussed, if an application randomizes the
location of its library code but leaves the program image
at a fixed location, it has failed to significantly improve
its defensive posture. The application remains vulner-
able to a code reuse attack in which adversaries simply
ignore the randomized code and target the fixed code.

MT defenses’ movements should also be timely
with respect to adversary observation and attack points.
If adversaries have an opportunity to observe the result
of a movement, and that knowledge presents them with
an opportunity to launch an attack, another movement
must be made before they can complete the attack.
In addition, if the MT defense relies on environmen-
tal diversity, it must expose attackers to this diversity
within the relevant attack period.

Consider a dynamic platforms technique such as
Talent,8 configured to migrate an application among
three platforms. The defense is predicated on forcing
attackers to exploit vulnerabilities on multiple, diverse
platforms. If the migration time is less than the attack
time, the technique has achieved its objective: attack-
ers must have a second vulnerability available on the
new platform to continue the attack. However, if the
migration time is greater than the attack time, the MT
technique actually diminishes security because attack-
ers have a choice of three platforms in which to locate
a vulnerability, rather than only a single, fixed platform.

Effective movements must also be unpredictable. If
attackers can predict the next movement, then the move-
ment provides no additional security. If attackers can
predict the movement with high probability, or if only
a narrow range of movement is available, the movement
provides only a small amount of additional security.

Threat models and use cases provide the necessary
context for evaluating sufficient thresholds of unpre-
dictability. For example, in the case of an automatically
respawning webserver, 16 bits of entropy in an ASLR
implementation require only minutes to break through
brute force. On the other hand, if a process must be
manually restarted after each guess (because incorrect
guesses likely cause segmentation faults), even a low
amount of total entropy might not provide attackers
with a significantly high probability of success in a rea-
sonable amount of time.

Table 1 provides a summary of the five domains bro-
ken down by the attack phases predominantly disrupted
by techniques in that domain.

M T techniques, though currently underdevel-
oped, are important tools for defense against

cyberattacks. Those few in active deployment that
are still nascent have demonstrated the potential to
increase the difficulty level for attackers. In combina-
tion, techniques from each of the five domains can

Table 1. Primary attack phases disrupted by techniques in the five domains.

MT domains
Attack phases

Reconnaissance Access Development Launch Persistence

Dynamic networks ■ ■

Dynamic platforms ■ ■ ■

Dynamic runtime environments ■ ■

Dynamic software ■ ■

Dynamic data ■ ■

j2okh.indd 25 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

26 IEEE Security & Privacy March/April 2014

MOVING TARGET

guard against all phases of the attack kill chain and thus
dramatically improve our cyber posture, though this
requires a deep understanding and mitigation of their
weaknesses and shortcomings.

Techniques in each of the five MT domains have var-
ious strengths and weaknesses. Some are most appropri-
ate for a specific mission in which needs are specialized
and security is emphasized over performance. Others
are well-suited for integration into our general-purpose
computing environments, and the community should
work to ensure that systems and applications have
the appropriate mechanisms built in to support these.
Many techniques need further development, and all
require dedicated analysis.

However, the field is in a strong position to increase
attacker workload, with both a growing research base
and widespread deployments on which to build.

Acknowledgments
We thank William Leonard and Mark Rabe for their signifi-
cant contributions to this work. This work is sponsored by the
Department of Defense under Air Force Contract FA8721-
05-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not neces-
sarily endorsed by the US government.

References
1. “Cybersecurity Game-Change Research & Development

Recommendations,” Networking and Information Tech-
nology Research and Development Program, May 2010;
www.nitrd.gov/pubs/CSIA_IWG_%20Cybersecurity
_%20GameChange_RD_%20Recommendations
_20100513.pdf.

2. M. Carvalho et al., “Command and Control Require-
ments for Moving-Target Defense,” IEEE Intelligent Sys-
tems, vol. 27, no. 3, 2012, pp. 79–85.

3. R. Colbaugh and K. Glass, “Predictability-Oriented
Defense against Adaptive Adversaries,” Proc. IEEE Int’l
Conf. Systems, Man, and Cybernetics (SMC 12), 2012, pp.
2721–2727.

4. S. Jajodia et al., eds., Moving Target Defense: Creating
Asymmetric Uncertainty for Cyber Threats, Springer, 2011.

5. S. Jajodia et al., eds., Moving Target Defense II: Application
of Game Theory and Adversarial Modeling, Springer, 2012.

6. D. Kewley et al., “Dynamic Approaches to Thwart Adver-
sary Intelligence Gathering,” Proc. DARPA Information
Survivability Conference and Exposition II (DISCEX 01),
vol. 1, 2001, pp. 176–185.

7. J. Li, P. Reiher, and G.J. Popek, “Resilient Self-Organizing
Overlay Networks for Security Update Delivery,” IEEE J.
Selected Areas in Communications, vol. 22, no. 1, 2004, pp.
189–202.

8. H. Okhravi et al., “Creating a Cyber Moving Target for
Critical Infrastructure Applications Using Platform

Diversity,” Int’l J. Critical Infrastructure Protection, vol. 5,
no. 1, 2012, pp. 30–39.

9. B. Cox et al., “N-Variant Systems: A Secretless Framework
for Security through Diversity,” Proc. 15th Usenix Security
Symp., 2006, pp. 105–120.

10. G.S. Kc, A.D. Keromytis, and V. Prevelakis, “Countering
Code-Injection Attacks with Instruction-Set Randomiza-
tion,” Proc. 10th ACM Conf. Computer and Communica-
tions Security (CCS 03), 2003, pp. 272–280.

11. L. Szekeres et al., “SoK: Eternal War in Memory,” Proc.
IEEE Symp. Security and Privacy, 2013, pp. 48–62.

12. B. Salamat et al., “Runtime Defense against Code Injection
Attacks Using Replicated Execution,” IEEE Trans. Depend-
able and Secure Computing, vol. 8, no. 4, 2011, pp. 588–601.

13. C. Le Goues et al., “GenProg: A Generic Method for
Automatic Software Repair,” IEEE Trans. Software Eng.,
vol. 38, no. 1, 2012, pp. 54–72.

14. P.E. Ammann and J.C. Knight, “Data Diversity: An
Approach to Software Fault Tolerance,” IEEE Trans. Com-
puters, vol. 37, no. 4, 1988, pp. 418–425.

15. C. Cadar et al., Data Randomization, tech. report MSR-
TR-2008-120, Microsoft Research, Sept. 2008.

Hamed Okhravi is a member of the technical staff at
MIT Lincoln Laboratory. His research interests
include systems security, science of security, security
metrics, and operating systems. Okhravi received a
PhD in electrical and computer engineering from the
University of Illinois at Urbana-Champaign. Contact
him at hamed.okhravi@ll.mit.edu.

Thomas Hobson is a member of the technical staff at MIT
Lincoln Laboratory. His research interests include
systems security, software security, and vulnerability
analysis. Hobson received an MS in information secu-
rity from Carnegie Mellon University. Contact him at
thomas.hobson@ll.mit.edu.

David Bigelow is a member of the technical staff at MIT
Lincoln Laboratory. His research interests include
operating systems, storage, real-time systems, high-
performance computing, and reliability. Bigelow
received a PhD in computer science from the Uni-
versity of California, Santa Cruz. Contact him at
 dbigelow@ll.mit.edu.

William Streilein is an assistant group leader in the
Cyber Systems and Technology Group at MIT Lin-
coln Laboratory. His research interests include
machine learning and modeling and simulation, espe-
cially as applied to problems in cybersecurity, security
metrics, and cyber moving target. Streilein received
a PhD in cognitive and neural systems from Boston
University. Contact him at wws@ll.mit.edu.

j2okh.indd 26 3/14/14 9:14 AM

Authorized licensed use limited to: Eastern Washington Univ. Downloaded on April 29,2024 at 19:28:40 UTC from IEEE Xplore. Restrictions apply.

